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 a b s t r a c t

The design of new ships is a process that requires knowledge of several aspects of naval architecture and marine 
engineering. During the early design stage, one of the first issues that designers should face is the preliminary 
estimation of the vessel’s main dimensions, respecting the desiderata of the ship owner. Therefore, it is relevant 
to provide designers with suitable tools that may help estimate the principal dimensions, consider conventional 
methods and investigate the applicability of modern techniques based on machine learning. The present work 
focuses on applying different regression techniques to a database of RoPax vessels, finding mathematical instru-
ments to evaluate the ship’s main dimensions. Conventional regression techniques are first investigated here to 
compare with the existing formulae provided by other databases. The study is then extended by applying multi-
ple linear regression and forest tree algorithms, seeking an improvement of conventional formulations available 
in the literature. The results highlight how the most modern regression techniques allow for better coverage of 
the design space, allowing the use of more than one input to obtain the final dimensions.

1.  Introduction

Ship design is a complex process that requires multiple phases with a 
constantly increasing level of detail, ranging from the conceptual design 
of the vessel up to the detailed design of the subsystems (Andrews, 1998; 
Caprace and Rigo, 2011). The preliminary stages of the design process 
include the most crucial and relevant decisions, influencing the direction 
of the whole design (Watson, 1998; Papanikolaou et al., 2022). In this 
phase, the designer should choose the vessel’s dimensions, satisfying the 
global requirements of the shipowner (Schneekluth and Bertram, 1998; 
Ljulj et al., 2020).

The praxis for the design of ships is using simple regression or di-
agrams that allow for determining the dimensions as a function of a 
design-driven parameter (Žanić et al., 1992; Kalokairinos et al., 2005; 
Grubišić and Begović, 2001), varying according to the vessel type (Pa-
panikolaou, 2014; Abramowski et al., 2018). For the specific case of 
RoPax vessels, the driving parameters are the displacement, the dead-
weight or the lane metres (Trincas et al., 1994). For this purpose, the 
literature provides examples of simple regression models for various pa-
rameters, with some regressions based on displacement, deadweight, 
and others as a function of lane meters or length (Piko, 1980; Putra et 
al., 2022; Kristensen, 2016; Friis et al., 2002; Novak et al., 2020). How-
ever, in the preliminary design stage, the shipowner may also require 
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the satisfaction of additional parameters, such as ship speed, installed 
power, or passenger capacity.

Simple regression analyses in the literature do not account for these 
additional parameters when estimating a ship’s main dimensions. Fur-
thermore, the database used for such regressions, in the case of RoPax 
vessels, refers to old ships, not accounting for recent designs. Therefore, 
besides the inclusion of modern ships in the starting database, an al-
ternative approach is needed to enhance the accuracy of the regression 
models used for this evaluation. Other methods, ranging from multiple 
linear regressions to advanced machine learning techniques (Cepowski 
and Chorab, 2021; Majanarić et al., 2022), allow for the inclusion of 
more parameters in the regression process. These approaches require 
an initial, comprehensive database of ships containing all relevant di-
mensions and parameters. To ensure reliability, the database must be 
homogeneous, with outliers and incomplete datasets removed. The qual-
ity of the database also influences the type of regression that can be 
applied, particularly when using machine learning techniques (Asrol et 
al., 2021).

In the present study, the database consists of 87 RoPax vessels, de-
rived from an initial population of 127 ships after the removal of in-
complete data and outliers (Clarksons, 2024; Ferry-site, 2024). Given 
the limited sample size of 87 vessels, it is not recommended to ap-
ply machine learning techniques such as neural networks, which re-

https://doi.org/10.1016/j.oceaneng.2025.121407
Received 20 January 2025; Received in revised form 13 April 2025; Accepted 27 April 2025

Ocean Engineering 333 (2025) 121407 

Available online 18 May 2025 
0029-8018/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
https://orcid.org/0000-0003-3471-9411

$DWT$


\begin {equation}\label {eq00} x=\alpha \left (DWT\right )^\beta \cdot \epsilon \end {equation}


$\alpha $


$\beta $


\begin {equation}HP=1640\left (DWT\right )^{0.905} \label {Xeqn3-5}\end {equation}


\begin {equation}x=\alpha +\beta \left (DWT\right )+\gamma \left (DWT\right )^2+\epsilon \label {Xeqn4-6}\end {equation}


$\alpha $


$\beta $


$\gamma $


\begin {equation}HP=1010+1340\left (DWT\right ) \label {Xeqn6-10}\end {equation}


$R^2$


$LM$


$LM$


$LM$


\begin {equation}x=\alpha \left (LM\right )^\beta \cdot \epsilon \label {Xeqn7-11}\end {equation}
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$-$


$DWT^2\cdot N_p^2$


$-$


$-$


$N_p^4$


$-$


$-$


$\Delta $


$P_B$


$-$


$DWT$


$DWT$


$N_p$


$N_p$


$-$


$-$


$DWT^2$


$-$


$-$


$DWT^2$


$-$


$-$


$DWT\cdot N_p$


$-$


$-$


$DWT\cdot N_p$


$N_p^2$


$-$


$-$


$N_p^2$


$DWT^2\cdot N_p$


$DWT^3$


$DWT\cdot N_p^2$


$N_p^3$


$-$


$-$


$N_p^3$


$DWT^2\cdot N_p^2$


$-$


$-$


$N_p^4$


$-$


$-$


$V_s$


$LM$


$-$


$DWT$


$DWT$


$N_p$


$N_p$


$-$


$-$


$DWT^2$


$DWT^2$


$DWT\cdot N_p$


$DWT\cdot N_p$


$N_p^2$


$-$


$-$


$N_p^2$


$DWT^2\cdot N_p$


$-$


$-$


$DWT^3$


$-$


$-$


$DWT\cdot N_p^2$


$DWT^2\cdot N_p$


$-$


$-$


$DWT\cdot N_p^2$


$N_p^3$


$-$


$-$


$DWT^3\cdot N_p$


$DWT\cdot N_p^3$


$-$


$-$


$N_p^4$


$N_p$


$DWT$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$N_p$


$DWT$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$V_s$


$LM$


$N_p$


$LM$


$V_s$


$N_p$


$DWT$


$LM$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$V_s$


$DWT$


$N_p$


$LM$


$L$


$B$


$-$


$N_p$


$N_p$


$LM$


$LM$


$N_p^2$


$-$


$-$


$N_p^2$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$LM^2$


$-$


$-$


$LM^2$


$-$


$-$


$N_p^3$


$N_p^3$


$N_p^2\cdot LM$


$N_p^2\cdot LM$


$N_p\cdot LM^2$


$LM^3$


$N_p^4$


$-$


$-$


$N_p^4$


$-$


$-$


$N_p^2\cdot LM^2$


$-$


$-$


$N_p^3\cdot LM$


$-$


$-$


$LM^4$


$-$


$-$


$D$


$T$


$-$


$N_p$


$-$


$-$


$N_p$


$LM$


$LM$


$N_p^2$


$N_p^2$


$-$


$-$


$N_p^3$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$LM^2$


$-$


$-$


$N_p^2$


$N_p^2\cdot LM$


$LM^3$


$N_p^4$


$-$


$-$


$LM^4$


$-$


$-$


$\Delta $


$P_B$


$-$


$N_p$


$-$


$-$


$N_p$


$-$


$-$


$LM$


$LM$


$N_p^2$


$N_p^2$


$N_p\cdot LM$


$N_p\cdot LM$


$LM^2$


$-$


$-$


$LM^2$


$-$


$-$


$N_p^2\cdot LM$


$-$


$-$


$N_p^3$


$-$


$-$


$N_p^2\cdot LM$


$N_p\cdot LM^2$


$-$


$-$


$LM^3$


$V_s$


$DWT$


$-$


$-$


$-$


$N_p$


$N_p$


$LM$


$LM$


$N_p^2$


$-$


$-$


$N_p^2$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$LM^2$


$-$


$-$


$LM^2$


$-$


$-$


$N_p^2\cdot LM$


$LM^3$


$N_p$


$LM$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$N_p$


$LM$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$DWT$


$\Delta $


$P_B$


$V_s$


$N_p$


$V_s$


$DWT$


$V_s$


$N_p$


$DWT$


$LM$


$V_s$


$N_p$


$DWT$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$LM$


$N_p$


$V_s$


$DWT$


$L$


$B$


$-$


$-$


$-$


$DWT$


$DWT$


$V_s$


$N_p$


$-$


$-$


$N_p$


$DWT^2$


$-$


$-$


$DWT^2$


$DWT\cdot V_s$


$-$


$-$


$DWT\cdot V_s$


$-$


$V_s^2$


$-$


$-$


$V_s^2$


$-$


$-$


$DWT\cdot N_p$


$DWT\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$V_s\cdot N_p$


$-$


$-$


$N_p^2$


$-$


$-$


$N_p^2$


$DWT^3$


$DWT\cdot V_s^2$


$DWT^2\cdot V_s$


$DWT^2\cdot N_p$


$-$


$-$


$DWT\cdot V_s^2$


$DWT\cdot N_P\cdot V_s$


$V_s^3$


$V_s^2\cdot N_p$


$DWT^2\cdot N_p$


$-$


$-$


$DWT\cdot N_p^2$


$-$


$-$


$DWT\cdot V_s\cdot N_p$


$-$


$-$


$DWT\cdot V_s^2\cdot N_p$


$-$


$-$


$V_s^2\cdot N_p$


$-$


$-$


$V_s\cdot N_p^2$


$DWT^2\cdot V_s^2$


$-$


$-$


$V_s^4$


$-$


$-$


$DWT^2\cdot V_s\cdot N_p$


$V_s^3\cdot N_p$


$V_s^2\cdot N_p^2$


$-$


$-$


$D$


$T$


$-$


$DWT$


$-$


$-$


$DWT$


$V_s$


$-$


$-$


$V_s$


$-$


$-$


$N_p$


$N_p$


$-$


$-$


$DWT\cdot V_s$


$DWT^2$


$-$


$-$


$V_s^2$


$DWT\cdot V_s$


$-$


$-$


$DWT\cdot N_p$


$-$


$-$


$V_s^2$


$V_s\cdot N_p$


$-$


$-$


$DWT\cdot N_p$


$-$


$-$


$N_p^2$


$V_s\cdot N_p$


$DWT\cdot V_s^2$


$-$


$-$


$DWT\cdot V_s^2$


$DWT\cdot V_s\cdot N_p$


$V_s^3$


$-$


$-$


$V_s^2\cdot N_p$


$DWT\cdot V_s\cdot N_p$


$V_s\cdot N_p^2$


$-$


$-$


$V_s^2\cdot N_p$


$-$


$-$


$DWT\cdot V_s^2\cdot N_p$


$-$


$-$


$V_s^3\cdot N_p$


$N_p$


$V_s$


$DWT$


$\Delta $


$P_B$


$-$


$-$


$-$


$DWT$


$DWT$


$V_s$


$-$


$-$


$V_s$


$N_p$


$-$


$-$


$N_p$


$DWT^2$


$DWT\cdot V_s$


$-$


$-$


$DWT\cdot V_s$


$-$


$-$


$V_s^2$


$-$


$-$


$V_s^2$


$DWT\cdot N_p$


$-$


$-$


$DWT\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$N_p^2$


$N_p^2$


$DWT\cdot V_s^2$


$DWT\cdot V_s^2$


$DWT\cdot V_s\cdot N_p$


$V_s^3$


$-$


$-$


$V_s^2\cdot N_p$


$DWT^2\cdot N_p$


$-$


$-$


$N_p^3$


$-$


$-$


$DWT\cdot V_s\cdot N_p$


$DWT\cdot V_s^2\cdot N_p$


$-$


$-$


$V_s^2\cdot N_p$


$-$


$-$


$DWT\cdot N_p^2$


$-$


$-$


$V_s\cdot N_p^2$


$-$


$-$


$DWT\cdot V_s^2\cdot N_p$


$-$


$-$


$V_s^3\cdot N_p$


$DWT\cdot V_s\cdot {N_{p}^{2}}$


$LM$


$DWT$


$N_p$


$-$


$-$


$DWT^2$


$N_p$


$V_s$


$DWT$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$N_p$


$V_s$


$DWT$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$LM$


$N_p$


$V_s$


$LM$


$LM$


$DWT$


$V_s$


$N_{p}$


$LM$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$DWT$


$N_p$


$V_s$


$LM$


$L$


$B$


$-$


$-$


$-$


$V_s$


$V_s$


$N_p$


$N_p$


$LM$


$LM$


$V_s^2$


$-$


$-$


$V_s^2$


$-$


$-$


$V_s\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$-$


$-$


$N_p^2$


$N_p^2$


$V_s\cdot LM$


$-$


$-$


$V_s\cdot LM$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$N_p\cdot LM$


$LM^2$


$LM^2$


$V_s^3$


$V_s^2\cdot LM$


$V_s\cdot N_p\cdot LM$


$V_s\cdot N_p\cdot LM$


$-$


$-$


$N_p^2\cdot LM$


$-$


$-$


$N_p^2\cdot LM$


$-$


$-$


$N_p\cdot LM^2$


$-$


$-$


$V_s\cdot LM^2$


$N_P\cdot LM^2$


$-$


$-$


$LM^3$


$-$


$-$


$V_s^2\cdot LM^2$


$-$


$-$


$V_s\cdot N_p\cdot LM^2$


$V_s\cdot LM^3$


$D$


$T$


$-$


$-$


$-$


$V_s$


$V_s$


$-$


$-$


$N_p$


$N_p$


$LM$


$LM$


$-$


$-$


$V_s^2$


$-$


$-$


$V_s^2$


$V_s\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$-$


$-$


$N_p^2$


$N_p^2$


$-$


$-$


$V_s\cdot LM$


$-$


$-$


$V_s\cdot LM$


$N_p\cdot LM$


$-$


$-$


$N_p\cdot LM$


$-$


$-$


$LM^2$


$-$


$-$


$LM^2$


$-$


$-$


$V_s^2\cdot N_p$


$N_p^3$


$N_p^3$


$-$


$-$


$V_s^2\cdot LM$


$-$


$-$


$V_s\cdot N_p\cdot LM$


$V_s\cdot N_p\cdot LM$


$LM^3$


$LM^3$


$N_p$


$V_s$


$LM$


$\Delta $


$P_B$


$-$


$V_s$


$-$


$-$


$V_s$


$N_p$


$N_p$


$-$


$-$


$LM$


$LM$


$-$


$-$


$V_s^2$


$V_s^2$


$-$


$-$


$V_s\cdot N_p$


$-$


$-$


$V_s\cdot N_p$


$N_p^2$


$N_p^2$


$V_s\cdot LM$


$-$


$-$


$V_s\cdot LM$


$N_p\cdot LM$


$-$


$-$


$N_p\cdot LM$


$LM^2$


$-$


$-$


$LM^2$


$V_s\cdot N_p\cdot LM$


$N_p^3$


$-$


$-$


$N_p^2\cdot LM$


$-$


$-$


$V_s^2\cdot LM$


$V_s\cdot N_p\cdot LM$


$-$


$-$


$V_s\cdot LM^2$


$-$


$-$


$N_p\cdot LM^2$


$-$


$-$


$LM^3$


$-$


$-$


$V_s\cdot N_p\cdot LM^2$


$V_s\cdot LM^3$


$DWT$


$-$


$-$


$V_s$


$N_p$


$-$


$-$


$LM$


$V_s^2$


$-$


$-$


$N_p^2$


$V_s\cdot LM$


$-$


$-$


$N_p\cdot LM$


$LM^2$


$-$


$-$


$V_s^3$


$N_p^2\cdot LM$


$-$


$-$


$V_s\cdot LM^2$


$N_p$


$V_s$


$LM$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$N_p$


$V_s$


$LM$


$R^2$


$R^2_{adj}$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$DWT$


$\Delta $


$P_B$


$V_s$


$DWT$


$V_s$


$DWT$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$N_p$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$V_s$


$DWT$


$V_s$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$N_p$


$LM$


$V_s$


$LM$


$V_s$


$LM$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$N_p$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$V_s$


$LM$


$V_s$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$DWT$


$\Delta $


$P_B$


$N_p$


$N_p$


$DWT$


$N_p$


$DWT$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$V_s$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$N_p$


$DWT$


$N_p$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$V_s$


$LM$


$D$


$N_p$


$LM$


$N_p$


$LM$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$V_s$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$N_p$


$LM$


$N_p$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$DWT$


$\Delta $


$P_B$


$V_s$


$D$


$N_p$


$V_s$


$DWT$


$V_s$


$N_p$


$DWT$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$N_p$


$V_s$


$DWT$


$N_p$


$V_s$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$LM$


$N_p$


$V_s$


$LM$


$V_s$


$N_p$


$LM$


$L$


$B$


$D$


$T$


$\Delta $


$P_B$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$Prs$


$R^2$


$N_p$


$V_s$


$LM$


$N_p$


$V_s$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$L$


$B$


$D$


$T$


$DWT$


$\Delta $


$P_B$


$D$


$D$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$V_s$


$DWT$


$V_s$


$LM$


$N_p$


$DWT$


$N_p$


$LM$


$N_p$


$V_s$


$DWT$


$N_p$


$V_s$


$LM$


$DWT$


$\Delta $


$LM$


$L$


$L$


$DWT$


$\Delta $


$LM$


$DWT$


$\Delta $


$LM$


$L$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$LM$


$L$


$L$


$L$


$L$


$B$


$DWT$


$LM$


$\Delta $


$L$


$B$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$DWT$


$\Delta $


$LM$


$LM$


$B$


$D$


$DWT$


$L$


$\Delta $


$LM$


$D$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$R^2$


$Prs$


$D$


$T$


$T$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$L$


$T$


$\Delta $


$DWT$


$L$


$LM$


$\Delta $


$\Delta $


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$L$


$LM$


$LM$


$\Delta $


$DWT$


$\Delta $


$LM$


$L$


$DWT$


$DWT$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$\Delta $


$L$


$LM$


$\Delta $


$DWT$


$P_B$


$DWT$


$\Delta $


$L$


$LM$


$P_B$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$P_B$


$P_B$


$P_B$


$V_s$


$\Delta $


$L$


$LM$


$DWT$


$V_s$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$V_s$


$V_s$


$N_p$


$DWT$


$LM$


$\Delta $


$L$


$N_p$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$LM$


$N_p$


$V_s$


$LM$


$L$


$DWT$


$\Delta $


$LM$


$LM$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$DWT$


$\Delta $


$L$


$DWT$


$LM$


$LM$


$D$


$P_B$


$N_p$


$R^2$


$MAPE$


$RMSE$


$RRMSE$


$Prs$


$P_B$


$V_s$


$V_s$


$P_B$


$DWT$


$\Delta $


$LM$


$L$


$L$


$DWT$


$\Delta $


$LM$


$L$


$DWT$


$L$


$L$


$R^2$


$Prs$


$B$


$R^2$


$Prs$


$D$


$R^2$


$RMSE$


$RRMSE$


$Prs$


$MAPE$


$R^2$


$Prs$


$T$


$R^2$


$R^2$


$Prs$


$\Delta $


$R^2$


$Prs$


$P_B$


$R^2$


$V_s$


$R^2$


$Prs$


$N_p$


$R^2$


$Prs$


$LM$


$R^2$


$Prs$


$\Delta $


$L$


$R^2$


$R^2$


$Prs$


$B$


$RMSE$


$RRMSE$


$RMSE$


$RRMSE$


$R^2$


$Prs$


$D$


$R^2$


$Prs$


$T$


$R^2$


$T$


$R^2$


$Prs$


$DWT$


$R^2$


$MAPE$


$R^2$


$Prs$


$P_B$


$R^2$


$MAPE$
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quire a larger dataset to perform effectively (Clausen et al. 2001;
Gurgen et al. 2018). However, other methods, such as random forest, 
can handle smaller datasets and are thus suitable for this study (Ekinci 
et al., 2011; Rinauro et al., 2024). For the execution and testing of the 
different regression models, the final dataset has been divided into a 
training set, used to fit the regressions, and a test set for evaluating and 
comparing the different models.

Therefore, this work compares the simple conventional regression 
formulae applied to the present database with the multiple linear regres-
sions and the random forest technique. To achieve this aim, the paper 
follows the outline presented below:
– Section 2 provides a summary of the regression models available in 
the literature for predicting the main dimensions of RoPax vessels.

– Section 3 outlines the initial database and details the process used 
to exclude outliers and divide the training and test sets.

– Section 4 introduces the regression strategy for simple and multiple 
linear regressions, as well as the random forest approach, along with 
the methodology used to assess the quality of the regressions.

– Section 5 presents the results of the regression analysis on the train-
ing set.

– Section 6 presents the application of the regressions on the test set, 
along with a discussion of the obtained results.

The study provides a step forward in the main dimensions estimation of 
RoPax vessels, employing a modern database as a source for the regres-
sion process. The comparison between the formulations available in the 
literature and the ones derived from the study highlights a significant 
difference in the regression formulation, due to the different population 
of the database, that includes modern vessels. Therefore, even the new 
simple regression formulae, derived from the new database, are a signif-
icant improvement for designers in the initial estimate of RoPax vessels’ 
main dimensions, compared to old formulations available in the liter-
ature. Furthermore, the study demonstrates how advanced regression 
strategies outperform simpler methods by achieving higher regression 
accuracy, enabling designers to incorporate more parameters when esti-
mating a ship’s main dimensions. The differences, advantages, and dis-
advantages of these advanced techniques are thoroughly explained and 
discussed in the paper.

2.  Available regression models for predicting the main 
dimensions of RoPax vessels

The selection of a ship’s dimensions is a key focus in the prelimi-
nary design phase of a vessel. Consequently, the literature offers various 
methods and formulations specifically for RoPax vessels. These formu-
lations differ in terms of the equation structure and the independent 
variable used for regression. However, all the equations rely on a single 
independent variable.

This section presents the equations based on the different indepen-
dent variables used to determine the ship’s dimensions, namely:
– Deadweight.
– Lane metres.
– Length.
– Others.

Each of the above mentioned variables depends on the availability of 
data at the beginning of the process and the strategy adopted for deter-
mining the main dimensions.

2.1.  Regression models based on deadweight

In ship design, one of the most straightforward ways to estimate the 
vessels’ dimensions is by using deadweight 𝐷𝑊 𝑇  as the independent 
variable. Analysing a database of 107 Ropax ships, Piko (1980) proposes 
a set of power regressions having the following form: 
𝑥 = 𝛼(𝐷𝑊 𝑇 )𝛽 ⋅ 𝜖 (1)

From the regression analysis the following parameters 𝛼 and 𝛽 result for 
the main dimensions:
𝐿 = 61.7(𝐷𝑊 𝑇 )0.423 (2)

𝐵 = 11.3(𝐷𝑊 𝑇 )0.303 (3)

𝑇 = 3.94(𝐷𝑊 𝑇 )0.297 (4)

The same model according to Eq. (1) is also used to define the horse-
power (in Hp) installed onboard: 
𝐻𝑃 = 1640(𝐷𝑊 𝑇 )0.905 (5)

All these equations underline a strong correlation between the dead-
weight and all the regressed parameters; therefore, the study of Piko 
(1980) includes also an alternative formulation for the main dimensions, 
according to a quadratic model: 
𝑥 = 𝛼 + 𝛽(𝐷𝑊 𝑇 ) + 𝛾(𝐷𝑊 𝑇 )2 + 𝜖 (6)

From the regression analysis the following parameters 𝛼, 𝛽 and 𝛾 result 
for the main dimensions:
𝐿 = 62.0 + 13.6(𝐷𝑊 𝑇 ) − 0.314(𝐷𝑊 𝑇 )2 (7)

𝐵 = 13.5 + 1.07(𝐷𝑊 𝑇 ) − 0.0151(𝐷𝑊 𝑇 )2 (8)

𝑇 = 4.42 + 0.423(𝐷𝑊 𝑇 ) − 0.00844(𝐷𝑊 𝑇 )2 (9)

For the horsepower, instead of a quadratic model, an alternative linear 
model is proposed according to the following formulation: 
𝐻𝑃 = 1010 + 1340(𝐷𝑊 𝑇 ) (10)

The study reports the quality of the regression in the form of the deter-
mination coefficient 𝑅2, highlighting higher values for the power regres-
sions compared to the quadratic and linear models. It is then advisable 
to use the power model as a reference for the determination of main 
dimension as a function of the deadweight.

2.2.  Regression models based on lane metres

Another possibility for estimating the main dimensions of a RoPax 
vessel in the preliminary design stage is by using the lane metres 𝐿𝑀 as 
the independent variable. Even though the lane metres are an important 
parameter for the design of RoPax ships, the literature does not report 
specific regression using 𝐿𝑀 as an independent variable. The only stud-
ies refer to Ro-ro ships.

Kristensen (2016) proposes a set of regressions as a function of 𝐿𝑀 . 
Part of the regressions are based on a power model as follows: 
𝑥 = 𝛼(𝐿𝑀)𝛽 ⋅ 𝜖 (11)

others are based on linear regressions in the following form: 
𝑥 = 𝛼 + 𝛽(𝐿𝑀) + 𝜖 (12)

According to the study, the following set of equations for the main di-
mensions is proposed:

𝐿𝑃𝑃 =
{

20.4(𝐿𝑀)0.259 if 𝐿𝑀 < 1, 402
11.18(𝐿𝑀)0.342 if 𝐿𝑀 ≥ 1, 402

(13)

𝐵 = 5.49(𝐿𝑀)0.198 (14)

𝑇 =
{

1.9(𝐿𝑀)0.16 if 𝐿𝑀 < 2, 000
5.81 + 0.0003(𝐿𝑀) if 𝐿𝑀 ≥ 2, 000

(15)

𝐷 = 11.42 + 0.00172(𝐿𝑀) (16)

Another study provided by Putra et al. (2022) gives other formulations 
for the main dimensions, analysing a database of vessels below 2500 𝐺𝑇 . 
The given relationships are linear, thus following the model of Eq. (12). 
Regressions have the following form:
𝐿𝑂𝐴 = 22.632 + 0.223(𝐿𝑀) (17)

𝐿𝑃𝑃 = 20.039 + 0.197(𝐿𝑀) (18)

𝐵 = 7.698 + 0.038(𝐿𝑀) (19)
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No regressions are given for 𝑇  and 𝐷. In addition to the main dimen-
sions, the study provides a formulation for the gross tonnage 𝐺𝑇 : 
𝐺𝑇 = −31.382 + 6.034(𝐿𝑀) (20)

The quality of the regression is assessed according to the determination 
coefficient 𝑅2, finding values above 0.7 for the given relations. In any 
case, the study highlights a strong correlation in the database between 
the lane metres and the regressed variables.

2.3.  Regression models based on length

The third kind of regression available for the main dimensions of 
the RoPax vessels employs the length between perpendiculars 𝐿𝑃𝑃  as 
the independent variable. The study of Kristensen (2016) reports a set 
of regressions, according to a linear model: 
𝑥 = 𝛼 + 𝛽

(

𝐿𝑃𝑃
)

+ 𝜖 (21)

From the regression analysis, the following parameters 𝛼 and 𝛽 result 
for the main dimensions:
𝐿𝑂𝐴 = 1.93 + 1.078

(

𝐿𝑃𝑃
)

(22)

𝐵 = 7.5 + 0.116
(

𝐿𝑃𝑃
)

(23)

𝑇𝑚𝑖𝑛 = 0.95 + 0.028
(

𝐿𝑃𝑃
)

(24)

𝑇𝑚𝑎𝑥 = 2.45 + 0.028
(

𝐿𝑃𝑃
)

(25)

𝐷 = 6.94 + 0.05
(

𝐿𝑃𝑃
)

(26)

where 𝑇min and 𝑇max are the minimum and maximum draught of the unit, 
respectively. Also in this case, the study indicates a strong correlation 
between the main dimensions and 𝐿𝑃𝑃 . The study of Kristensen (2016), 
as reported also by Friis et al. (2002) and Papanikolaou (2014), is not 
using the same amount of data for all the proposed regression models 
in the case of RoPax vessels.

However, besides the main dimensions, the study also reports some 
statistics for other characteristics relevant to the RoPax ships, such as 
the number of passengers 𝑁𝑝 and the number of vehicles 𝑁𝑣. Analysing 
the data with the same model as in Eq. (21), the following regression 
can be derived from the reported data:
𝑁𝑝 = 24.784 + 9.1746

(

𝐿𝑃𝑃
)

(27)

𝑁𝑣 = 180.16 + 4.0638
(

𝐿𝑃𝑃
)

(28)

Even though a correlation exist for such variables, the determination 
coefficient 𝑅2 for the two regressions is low.

In the recent years, a study from Novak et al. (2020) analyses a 
database of 128 vessels built until 2019, thus referring to a set of 
ships which includes also more modern vessels compared to previously 
mentioned studies. The authors propose two linear regressions for the 
breadth and draught according to the model presented in Eq. (21). The 
regressions have the following forms:
𝐵 = 0.1026

(

𝐿𝑃𝑃
)

+ 8.8904 (29)

𝑇 = 0.0271
(

𝐿𝑃𝑃
)

+ 1.6105 (30)

The formulations have a relatively high correlation coefficient of 0.679 
and 0.726, respectively.

2.4.  Other regressions

Besides length, deadweight and lane metres, other characteristics of 
the ship can be used as an independent variable for the estimation of 
main dimensions. As an example, the study of Kristensen (2016) pro-
poses a regression for the length by employing the number of passengers 
𝑁𝑝 as the independent variable. The resulting power model is: 

𝐿𝑃𝑃 = 22.5
(

𝑁𝑝
)0.255 (31)

Another parameter that could be of interest for the design of a RoPax 
vessel is the number of vehicles 𝑁𝑣. Therefore it could be possible that 

this parameter is available in the early stages of design. According to 
the study of Kristensen (2016), there is a strong correlation between the 
number of vehicles and the lane metres 𝐿𝑀 . This correlation results in 
the following linear model: 
𝐿𝑀 = 26.392 + 2.4461

(

𝑁𝑣
)

(32)

The selection of these kinds of equations depends on the availability 
of these data in the initial stage of design.

2.5.  Strategies for selecting the main dimensions of RoPax ships

As highlighted in the previous sections, there are multiple method-
ologies available for the determination of the main dimensions of a 
RoPax vessel. There could be different inputs from shipowners, and de-
pending on them, it may be possible to employ different equations.

If the deadweight 𝐷𝑊 𝑇  is given, it is possible to directly derive 
the dimensions applying the equations from (2) to (4). If the shipowner 
imposes a determinate amount of lane metres 𝐿𝑀 , then the equations 
from (13) to (16) could be used for the first estimate. Alternatively, if 
the 𝐿𝑃𝑃  is known, the equations to apply are from (22) to (26).

All these simple cases require the application of a unique set of equa-
tions. However, if other parameters are given, a combination of equation 
sets is required. If the number of passenger 𝑁𝑝 is provided, then Eq. (31) 
estimates the 𝐿𝑃𝑃  and, consequently, equations from (22) to (26) deter-
mine the remaining dimensions. As another example, if the number of 
vehicles 𝑁𝑣 is given, the lane metres 𝐿𝑀 can be obtained from Eq. (32) 
and then all the other dimensions are derived from the application of 
equations from (13) to (16).

In any case, all these kinds of solutions imply the availability of only 
one initial parameter for the estimation of the main dimensions. How-
ever, it is possible to have initial requirements that are not covered by 
the existing set of regressions, such as the speed 𝑉𝑠 or the required power 
𝑃𝐵 . Furthermore, the sets of equations that could be used do not refer to 
homogeneous databases; therefore, the results may be affected by many 
uncertainties. It is necessary to identify alternative methods to derive a 
set of equations or models that allow for deriving the main dimensions 
from homogeneous databases, including the possibility of using more 
than one independent variable.

3.  The RoPax database

The starting point for executing a regression analysis is the availabil-
ity of a suitable database. This study utilises an initial set of 127 ships 
from an online database, containing information on the main dimen-
sions, deadweight, displacement, lane meters, installed power, number 
of passengers, and vessel speed (Clarksons, 2024; Ferry-site, 2024).

3.1.  Outliers and incomplete data elimination

For a statistical regression, it is crucial to eliminate outliers and in-
complete datasets from the initial population, which means removing 
data points that lie outside the overall pattern in a distribution. Several 
methods in the literature exist for removing outliers from a population; 
this work adopts the interquartile range (𝐼𝑄𝑅) rule. This common rule 
states that a data point is considered an outlier if it is more than 1.5 
times the 𝐼𝑄𝑅 above the third quartile (𝑄3) or below the first quartile 
(𝑄1), which means: 
{

𝑥 ≤ 1.5𝐼𝑄𝑅 −𝑄1
𝑥 ≥ 1.5𝐼𝑄𝑅 +𝑄3

(33)

where 𝐼𝑄𝑅 is the distance between the first and the third quartiles: 
𝐼𝑄𝑅 = 𝑄3 −𝑄1 (34)

Prior to outliers detection, the incomplete sets of data have been 
removed from the database, thus removing all ships lacking complete 
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parameter data. From such analysis, 22 ships have been removed, keep-
ing only the ship having a complete set of parameters. Outlier detection 
has been conducted for all parameters of the database, resulting in the 
exclusion of additional 18 data points. Therefore, the final population 
is composed of 87 RoPax vessels. The vessels have a complete set of 
data for all the parameters. Because they all derive from the same data 
source, the data are homogeneous, especially for dimensions like the 
length where multiple definitions could be present (i.e. length overall, 
length between perpendiculars, or length at the waterline). In this spe-
cific case, data refer to the length between perpendiculars 𝐿𝑃𝑃 . Unfortu-
nately, the data at disposal did not provide some additional information 
regarding the design of the vessel, thus not allowing to know which are 
the specific rules they have to satisfy and that could be a reason for 
becoming an outlier for the database.

3.2.  Database analysis

The database is composed of a set of reasonably recent ships. Fig. 1 
presents the histogram of the vessels’ construction year. The ten old-
est ships in the database were built before 2000 and, in any case, not 
before 1996. Most RoPax vessels (about 43) were built between 2000 
and 2004. The most recent ships (about 4) are between 2020 and 2024. 
This composition represents an improvement over previous studies, as 
it presents more modern ships and does not include excessively old
vessels.

Fig. 2 shows the distribution of 𝐿𝑃𝑃  values in the database. The data 
distribution highlights that most data (57 ships) lie between 160 and 200 
metres. The data have a minimum length of 104 metres, a maximum of 
226 and a mean of 177.21 with a standard deviation of 28.36 metres. 
As a consequence, the data are not uniformly distributed between the 
maximum and the minimum.

Fig. 3 shows the distribution of the breadth 𝐵 among the database. 
The data have a minimum of 19 metres, a maximum of 35 and a mean 
of 26.51 with a standard deviation of 3.36 metres. As with the case of 
𝐿𝑃𝑃 , the data are not uniformly distributed between the minimum and 
maximum.

Fig. 4 shows the distribution of the depth 𝐷 among the database. 
The data have a minimum of 7 metres, a maximum of 22 and a mean of 
12.69 with a standard deviation of 4.37 metres. The distribution shows 
a primary peak around 9 metres and two smaller peaks at 15 and 21 
metres, respectively. This characteristic affects the homogeneity of the 
database as the data are clustered around the three peaks. Such be-
haviour may suggest that the origin of the data does not refer to the 
same conventions for all the vessels. Therefore, a statistical regression 

Fig. 1. RoPax construction years.

Fig. 2. 𝐿𝑃𝑃  distribution.

Fig. 3. 𝐵 distribution.

Fig. 4. 𝐷 distribution.
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Fig. 5. 𝑇  distribution.

Fig. 6. Δ distribution.

on this data could generate an unsatisfactory reproduction of the initial
population.

Fig. 5 shows the distribution of the draught 𝑇  in the database. The 
data have a minimum of 5 metres, a maximum of 7 and a mean of 6.46 
with a standard deviation of 0.56 metres. The data present a peak at 
6.6 metres. The resulting distribution is skewed towards the maximum 
region; thus, there should be no issue in performing regression for this 
main dimension.

Fig. 6 shows the distribution of the displacement Δ among the 
database. The data have a minimum of 5200 tons, a maximum of 33,700 
and a mean of 19,679.67 with a standard deviation of 6,748.31 tons. 
Analysing the figure, it is possible to conclude that the data are nor-
mally distributed between the minimum and the maximum.

Fig. 7 shows the distribution of the deadweight 𝐷𝑊 𝑇  among the 
database. The data have a minimum of 1200 tons, a maximum of 12,785 
and a mean of 6,837.68 with a standard deviation of 2,524.07 tons. Dis-
placement and deadweight are strongly correlated. Therefore, the dis-
tribution of 𝐷𝑊 𝑇  is similar to that of Δ; hence, the same considerations 
of 𝐷𝑊 𝑇  are valid for Δ.

Fig. 8 shows the distribution of the installed power 𝑃𝐵 in the 
database. The data have a minimum of 8,640 kW, a maximum of 67,200 
and a mean of 32,688.71 with a standard deviation of 14,484.26 kW. 

Fig. 7. 𝐷𝑊 𝑇  distribution.

Fig. 8. 𝑃𝐵 distribution.

The peak of the distribution is at 25,000 kW, resulting in a moderate 
skew towards the minimum value.

Fig. 9 shows the distribution of the vessel speed 𝑉𝑠 in the database. 
The data have a minimum of 18 knots, a maximum of 31 and a mean 
of 24.05 with a standard deviation of 3.09 knots. The highest density in 
the population is between 20 and 24 knots, with a consequent skew of 
the distribution towards the minimum of the data.

Fig. 10 shows the distribution of the number of passengers 𝑁𝑝 among 
the database. The data have a minimum of 264 passengers, a maximum 
of 3000 and a mean of 1307.14, with a standard deviation of 689.56 
passengers. The peak of the distribution is between 800 and 1,200, high-
lighting more density in the tale going to the maximum with respect to 
the minimum.

Fig. 11 shows the distribution of the lane metres 𝐿𝑀 among the 
database. The data have a minimum of 360, a maximum of 5500 and a 
mean of 2,228.78, with a standard deviation of 1,080.43 lane metres. 
The peak of the distribution is around 1600 lane metres, resulting in a 
skewness toward lower values.

However, for properly analysing the initial database, it is necessary 
to evaluate not only individual variables but also possible correlations 
among them. To this end, it is advisable to calculate the correlation 
matrix 𝐂 between all the parameters. Following the same order as in 
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Fig. 9. 𝑉𝑠 distribution.

Fig. 10. 𝑁𝑝 distribution.

Fig. 11. 𝐿𝑀 distribution.

the above description, the correlation matrix has the following form: 

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.76 0.20 0.68 0.86 0.89 0.40 0.17 0.21 0.75
0.76 1 0.38 0.57 0.73 0.93 0.21 −0.15 0.28 0.66
0.20 0.38 1 0.14 0.12 0.35 0.29 0.03 0.34 0.16
0.68 0.57 0.14 1 0.54 0.61 0.64 0.49 0.43 0.32
0.86 0.73 0.12 0.54 1 0.83 0.14 −0.09 −0.06 0.86
0.89 0.93 0.35 0.61 0.83 1 0.34 0∗ 0.29 0.73
0.40 0.21 0.29 0.64 0.14 0.34 1 0.81 0.57 0.04
0.17 −0.15 0.03 0.49 −0.09 0∗ 0.81 1 0.48 −0.18
0.21 0.28 0.34 0.43 −0.06 0.29 0.57 0.48 1 −0.16
0.75 0.66 0.16 0.32 0.86 0.73 0.04 −0.18 −0.16 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(35)

In the matrix, the term 0∗ indicates a value lower than 10−2. Generally 
the more a term in 𝐂 is close to 1 the most possibility is to have a corre-
lation between two variables. However, there is no criterion to establish 
the appropriate threshold for detecting a correlation. On the other hand, 
it is possible to evaluate the matrix of the p-values 𝐏 for testing the hy-
pothesis that there is no relationship between the observed phenomena. 
In case a diagonal value of 𝐏 is below a given threshold (generally 0.05), 
then the corresponding correlation in 𝐂 is considered significant. The 
matrix 𝐏 has the following form: 

𝐏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0∗ 0.07 0∗ 0∗ 0∗ 0∗ 0.12 0.05 0∗

0∗ 1 0∗ 0∗ 0∗ 0∗ 0.05 0.17 0.01 0∗

0.07 0∗ 1 0.20 0.29 0∗ 0.01 0.77 0∗ 0.14
0∗ 0∗ 0.20 1 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0.29 0∗ 1 0∗ 0.21 0.42 0.59 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 1 0∗ 0.98 0.01 0∗

0∗ 0.05 0.01 0∗ 0.21 0∗ 1 0∗ 0∗ 0.74
0.12 0.17 0.77 0∗ 0.42 0.98 0∗ 1 0∗ 0.09
0.05 0.01 0∗ 0∗ 0.59 0.01 0∗ 0∗ 1 0.14
0∗ 0∗ 0.14 0∗ 0∗ 0∗ 0.74 0.09 0.14 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

Also in this case, the term 0∗ indicates a value lower than 10−2. Accord-
ing to the criterion above, a strong correlation is identified when the 
p-value is less than 0.01, medium if between 0.01 and 0.05, and low 
otherwise.

From the analysis of the p-values matrix 𝐏, the following considera-
tions can be drawn on the correlation between variables:
– Length 𝐿: the length (for brevity 𝐿𝑃𝑃  is indicated as 𝐿 in the rest 
of the paper) presents a strong correlation with 𝐵, 𝑇 , Δ, 𝐷𝑊 𝑇 ,𝑃𝐵
and 𝐿𝑀 . The correlation with 𝐷 and 𝑁𝑝 is medium, while the cor-
relation with 𝑉𝑠 is low. Therefore, 𝐿 is a suitable candidate to be an 
independent variable for the estimation of the main dimension of a 
RoPax with this database.

– Breadth 𝐵: the breadth presents a strong correlation with 𝐿, 𝐷, 𝑇 , Δ, 
𝐷𝑊 𝑇  and 𝐿𝑀 . The correlation with 𝑃𝐵 and 𝑁𝑝 is medium, while the 
correlation with 𝑉𝑠 is low. Even though the literature studies are not 
considering 𝐵 as an independent variable, the correlations suggest 
that also 𝐵 can be considered as an independent variable with the 
actual database.

– Depth 𝐷: the depth presents a strong correlation with 𝐵, 𝐷𝑊 𝑇  and 
𝑁𝑝. The correlation with 𝐿 and 𝑃𝐵 is medium, while the correlation 
with 𝑇 , Δ, 𝑉𝑠 and 𝐿𝑀is low. Therefore, for the present database, 𝐷
is not a suitable candidate to be an independent variable.

– Draught 𝑇 : the draught presents a strong correlation with all the 
other variables except for 𝐷, where the correlation is low. Usually, 
𝑇  is not used as an independent variable for the regressions (as high-
lighted in the literature); however, it could be considered as a good 
candidate for the present database.

– Displacement Δ: the displacement presents a strong correlation with 
𝐿, 𝐵, 𝑇 , 𝐷𝑊 𝑇  and 𝐿𝑀 . The correlation with 𝐷, 𝑃𝐵 , 𝑉𝑠 and 𝑁𝑝 is 
low. Then, Δ can be considered for the present database as a good 
candidate to be an independent variable for the estimation of the 
main dimensions.
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Table 1 
Qualitative correlation between the variables of the RoPax database.

𝐿 𝐵 𝐷 𝑇 Δ 𝐷𝑊 𝑇 𝑃𝐵 𝑉𝑠 𝑁𝑝 𝐿𝑀

𝐿  –  strong  medium  strong  strong  strong  strong  low  medium  strong
𝐵  strong  –  strong  strong  strong  strong  medium  low  medium  strong
𝐷  medium  strong  –  low  low  strong  medium  low  strong  low
𝑇  strong  strong  low  –  strong  strong  strong  strong  strong  strong
Δ  strong  strong  low  strong  –  strong  low  low  low  strong
𝐷𝑊 𝑇  strong  strong  strong  strong  strong  –  strong  low  medium  strong
𝑃𝐵  strong  medium  medium  strong  low  strong  –  strong  strong  low
𝑉𝑠  low  low  low  strong  low  low  strong  –  strong  medium
𝑁𝑝  medium  medium  strong  strong  low  medium  strong  strong  –  low
𝐿𝑀  strong  strong  low  strong  strong  strong  low  medium  low  –

– Deadweight 𝐷𝑊 𝑇 : the deadweight presents a strong correlation with 
all the other variables except for 𝑉𝑠 and 𝑁𝑝. With 𝑉𝑠 the correlation 
is low, while with 𝑁𝑝 the correlation is medium. Then, 𝐷𝑊 𝑇  can be 
considered a good candidate to be an independent variable for the 
estimation of RoPax main dimensions.

– Power 𝑃𝐵 : the installed power presents a strong correlation with 𝐿, 
𝑇 , 𝐷𝑊 𝑇 , 𝑉𝑠 and 𝑁𝑝. The correlation with 𝐵 and 𝐷 is medium, while 
the correlation with Δ and 𝐿𝑀 is low. Therefore, 𝑃𝐵 can be consid-
ered as a possible candidate to be an independent variable for the 
estimation of the main dimensions.

– Speed 𝑉𝑠: the speed presents a strong correlation with 𝑇 , 𝑃𝐵 and 𝑁𝑝. 
The correlation with 𝐿𝑀 is medium, while the correlation with 𝐿, 
𝐵, 𝐷, Δ and 𝐷𝑊 𝑇  is low. Therefore, 𝑉𝑠 is not a suitable candidate 
to be the principal independent variable for the main dimensions 
estimation.

– Number of passengers 𝑁𝑝: the number of passengers presents a strong 
correlation with 𝐷, 𝑇 , 𝑃𝐵 and 𝑉𝑆 . The correlation with 𝐿, 𝐵 and 
𝐷𝑊 𝑇  is medium, while the correlation with Δ and 𝐿𝑀 is low. There-
fore, 𝑁𝑝 is not the best candidate to be the principal independent 
variable for the main dimensions estimation of RoPax.

– Lane metres 𝐿𝑀 : the lane metres presents a strong correlation with 
𝐿, 𝐵, 𝑇 , Δ and 𝐷𝑊 𝑇 . The correlation with 𝑉𝑠 is medium, while 
the correlation with 𝐷, 𝑃𝐵 and 𝑁𝑝 is low. Therefore, 𝐿𝑀 can be 
a suitable independent variable for the estimation of RoPax main 
dimensions.

All the qualitative correlations listed above are summarised in
Table 1, while an overview of the pairwise distributions of the variables 
is given in Fig. 12.

Analysing the figure it is possible to observe how the data are dis-
tributed among the variables, highlighting how simple regressions, like 
the ones described in Section 2, well represent the main dimensions 
and the other parameters for the cases of 𝐿, Δ, 𝐷𝑊 𝑇  and 𝐿𝑀 . Such a 
consideration suggests to try the simple regression analysis using those 
variables as the independent one. However, the necessities of satisfy all 
the requirement of a ship owner may request the availability of regres-
sions that includes more than a parameter as independent variable, thus 
including characteristics like 𝑃𝐵 , 𝑉𝑠 or 𝑁𝑝 that are not traditionally used 
in simple regressions. The correlation study, thus the matrix 𝐏 is helpful 
in advising which variables are not correlated with each other, avoid-
ing, for instance, autocorrelation problems in multiple linear regression 
analysis. However, such points will be further discussed in the coming 
sections.

3.3.  Training and test datasets

The present work employs both traditional regression techniques, 
like simple and multiple linear regressions, and machine learning tech-
niques as the random tree forest. Conventional studies in the field of 
regressions consider all the data at disposal in a database to fit the re-
gression and usually the quality of fit is assessed on the data used for 
determining the models (Fisher, 1922; Freedman, 2009).

However, with the rising applicability of machine learning tech-
niques for regression problems, it is necessary to change conventional 
approaches in such a way to have a fair comparison between machine 
learning-based regressions and traditional ones. In fact, once a machine 
learning method is applied, the original database should be divided into 
two parts, one used for the training of the models and one for the eval-
uation of the models, in such a way to provide an unbiased estimation 
of the final models.

In this study, the same data division approach has also been adopted 
for simple and multiple linear regressions. The initial dataset of 87 
RoPax vessels has been divided into a training set (80% of the ships) 
and a test set (the remaining 20%). The test set, often referred to as 
the holdout set, is obtained by removing a random sample from the full 
dataset.

As a result of this holdout methodology, the training set contains 70 
ships, while the test set consists of 17 ships. Although this division is 
generally performed randomly, the relatively small size of the dataset 
in this case may lead to the test set not fully covering the variability 
of the dataset. Therefore, a stratified random sampling has been per-
formed trying to ensure good coverage of the represented data. How-
ever, the relatively low number of data, does not allow to well repre-
sent the tales of the distribution for all the variables as this may require 
the availability of thousands of data. This is not a problem for model 
verification, as, in any case, the dataset is well covered by the provided
samples.

Fig. 13 shows the distributions of the training and test sets for the 
length. It can be observed that the test partition is covering the whole 
range of the database. Fig. 14 shows the distributions of the training 
and test sets for the breadth. From the figure it results that only the 
upper tail of the database is not represented by the test set for this vari-
able. Fig. 15 shows the distribution of the training and test sets for the 
depth. Also in this case, the distribution of the test data is well covering 
the database. Fig. 16 shows the distribution of the training and test sets 
for the draught. The test partition for this variable is lacking in coverage 
only for the upper tail of the distribution. Figs. 17 and 18 show the train-
ing and test sets for the 𝐷𝑊 𝑇  and Δ, respectively. In both cases, the test 
set covers properly the whole database. Figs. 19 and 20 show the train-
ing and test sets for the installed power and vessel speed, respectively. 
For both variables, the test set is not covering just the upper tail of the 
distributions. Fig. 21 shows the training and test sets for the number of 
passengers. For this variable, the test set is not covering the upper tail 
of the distribution. Finally, Fig. 22 shows the training and test sets for 
the lane metres. In this case the test set is covering the whole extension 
of the database. Thanks to the stratified approach adopted for select-
ing the holdout test set, it can be concluded that the resulting test data 
form a representative partition of the initial dataset. This makes them 
suitable for verifying the generalisation capabilities of the regression
models.

Therefore, all regression analyses were conducted using the training 
set, with training performance assessed for each model. Afterwards, the 
models were evaluated on the test set to verify their performance and 
validate the generalisation of the obtained regression results.
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Fig. 12. Pairwise distributions of database variables.

Fig. 13. 𝐿 distribution for training and test sets.

4.  Regression methodology

In the present study, different types of regression models are in-
vestigated to predict the main dimensions of a RoPax vessel, using 
the database presented in Section 3. The present section describes the 
methodology adopted to perform the regression analysis by means of 
the following models:

– Simple models (linear, power or logarithmic).
– Multiple linear regressions.
– Forest trees regressions.

In addition to describing the aforementioned methods, this section 
also presents the parameters used to evaluate the quality of the resulting 
regressions.

4.1.  Simple regressions

According to the literature, the most common approach for perform-
ing regression analysis on a ship’s main dimensions is through simple 
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Fig. 14. 𝐵 distribution for training and test sets.

Fig. 15. 𝐷 distribution for training and test sets.

Fig. 16. 𝑇  distribution for training and test sets.

Fig. 17. 𝐷𝑊 𝑇  distribution for training and test sets.

Fig. 18. Δ distribution for training and test sets.

regression models. These models are typically based on linear, power, 
or logarithmic regressions. A linear model takes the following general 
form: 
𝑦 = 𝛼 + 𝛽𝑥 + 𝜖 (37)

where 𝛼 and 𝛽 are the regression coefficients and 𝜖 is the residual error. 
A common way to evaluate 𝛼 and 𝛽 is by means of the least squares 
method. According to this methodology, the following estimation is 
valid:

𝛽 =
∑𝑛

𝑖=1
(

𝑥𝑖 − �̄�
)(

𝑦𝑖 − �̄�
)

(

𝑥𝑖 − �̄�
)2

(38)

𝛼 = �̄� − 𝛽�̄� (39)

where (𝑥𝑖, 𝑦𝑖
) are the data points and �̄� and �̄� are the mean values of the 

vectors.
When a power or a logarithmic model are selected, the following 

equations became representative:
𝑦 = 𝛼𝑥𝛽 ⋅ 𝜖 (40)

𝑦 = 𝛼 + 𝛽 ln 𝑥 + 𝜖 (41)

Also for Eqs. (40) and (41) the least square method can be used to iden-
tify the regression parameters 𝛼 and 𝛽. In fact, by means of proper trans-
formations, both the equations can be rewritten in the form of Eq. (37), 
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Fig. 19. 𝑃𝐵 distribution for training and test sets.

Fig. 20. 𝑉𝑠 distribution for training and test sets.

Fig. 21. 𝑁𝑝 distribution for training and test sets.

Fig. 22. 𝐿𝑀 distribution for training and test sets.

thus applying Eqs. (38) and (39) for the determination of regression 
parameters.

In this case, simple regression models use deadweight (𝐷𝑊 𝑇 ) as 
the independent variable, while displacement (Δ), lane meters (𝐿𝑀), 
and length (𝐿) are the dependent variables. For 𝐷𝑊 𝑇 , 𝐿𝑀 , and 𝐿, it 
is possible to compare the regression results with those from studies 
available in the literature and presented in Section 2.

4.2.  Multiple linear regressions

As highlighted in previous sections, ship designers may consider mul-
tiple parameters when selecting the main dimensions of a vessel, based 
on the requirements of the shipowner. While simple regressions are lim-
ited to a single independent variable, multiple linear regression (MLR) 
enables the use of several input variables simultaneously.

The general model for a multiple linear regression is given by the 
following matrix formulation: 
𝐲 = 𝛂𝐱 + 𝛜 (42)

where 𝐲 is the matrix of the measured variable, 𝐱 is the matrix of the 
independent variables, 𝛂 is the matrix of the regression coefficients and 
𝛜 are the errors.

According to the matrix formulation of Eq. (42), the matrix of the 
regression coefficients 𝛂 is unknown. The problem can be solved as fol-
lows: 
𝛂 =

(

𝐱′𝐱
)−1

⋅ 𝐱′𝐲 (43)

where 𝐱′ is the transpose of matrix 𝐱 and (𝐱′𝐱)−1 is the inverse of matrix 
𝐱′𝐱.

In the present study, the multiple linear regression analysis is applied 
to obtain regressions that includes more than one independent variable. 
The following cases are tested:

– Vessel speed 𝑉𝑠 and deadweight 𝐷𝑊 𝑇 .
– Vessel speed 𝑉𝑠 and lane metres 𝐿𝑀 .
– Number of passengers 𝑁𝑝 and deadweight 𝐷𝑊 𝑇 .
– Number of passengers 𝑁𝑝 and 𝐿𝑀 .
– Number of passengers 𝑁𝑝, vessel speed 𝑉𝑠 and deadweight 𝐷𝑊 𝑇 .
– Number of passengers 𝑁𝑝, vessel speed 𝑉𝑠 and lane metres 𝐿𝑀 .

These combinations were selected to avoid autocorrelation among inde-
pendent variables, as identified in Section 3. Moreover, vessel speed and 
number of passengers are parameters often specified by shipowners.
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4.3.  Forest tree algorithms

Multiple linear regression is not the only technique to obtain a model 
that consider more than one independent variable. In this sense, ma-
chine learning techniques could be a possible alternative solution. There 
are multiple methodologies in machine learning that could be used for 
regression purposes, starting from neural networks up to forest tree algo-
rithms. Having to deal with a relatively low number of data, the neural 
networks are not advisable to be used. On the other hand, forest tree 
works well with a low amount of data and, as shown by Rinauro et al. 
(2024) they can provide an enhancement in the accuracy of the regres-
sion compared to standard methods.

Forest tree algorithm is a Supervised Machine Learning Algorithm 
widely used in Classification and Regression problems. It builds deci-
sion trees on different samples and takes their majority vote for classi-
fication and average in case of regression. Random forest is a versatile 
machine learning algorithm that leverages an ensemble of multiple de-
cision trees to generate predictions or classifications. The random forest 
algorithm delivers a consolidated and more accurate result by combin-
ing the outputs of these trees. Its widespread popularity stems from its 
user-friendly nature and adaptability, which enables the effective tack-
ling of classification and regression problems. The algorithm’s strength 
lies in its ability to handle complex datasets and mitigate overfitting, 
making it a valuable tool for various predictive tasks in machine learn-
ing. One of the most relevant features of the Random Forest Algorithm 
is that it can handle the data set containing continuous variables, as in 
the case of regression, and categorical variables, as in the case of classifi-
cation. It performs better for classification and regression tasks. Despite 
its strengths, one drawback of the forest tree algorithm is its black-box 
nature–the model does not provide explicit regression coefficients, mak-
ing it less interpretable than traditional regression models.

In this study, forest tree algorithms are applied to the same variable 
combinations tested in the multiple linear regression models, enabling 
a direct comparison of performance between the two approaches.
4.4.  Regression quality assessment

Beyond the methodology used to derive regression models, it is cru-
cial to adopt appropriate metrics to assess their quality. A consistent 
evaluation framework allows for the comparison of models based on 
different techniques. For this purpose, in the present study use has been 
made of the following fit coefficients to asses the quality of the regres-
sions and compare the different formulations: coefficient of determina-
tion 𝑅2, Pearson coefficient 𝑃𝑟𝑠, 𝑀𝐴𝑃𝐸 (Mean Absolute Percentage 
Error), 𝑅𝑀𝑆𝐸 (Root Mean Square Error) and 𝑅𝑅𝑀𝑆𝐸 (Relative Root 
Mean Square Error). In particular, for multiple linear regression analy-
ses, additional parameters have been evaluated: the adjusted coefficient 
of determination 𝑅2

𝑎𝑑𝑗 for the regression itself and the 𝑆𝐸 (Standard 
Error), t-stud and p-value for all the regression coefficients.

Fit coefficients have the following formulations:

𝑅2 = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑡𝑜𝑡

= 1 −
∑𝑛

𝑖=1
(

𝑦𝑖 − 𝑦∗𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − �̄�
)2

(44)

𝑅2
𝑎𝑑𝑗 = 1 −

(

1 − 𝑅2) 𝑛 − 1
𝑛 − 𝑛𝑝 − 1

(45)

𝑀𝐴𝑃𝐸 =

∑𝑛
𝑖=1

|

|

|

𝑦𝑖 − 𝑦∗𝑖
|

|

|

𝑛
(46)

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1

(

𝑦𝑖 − 𝑦∗𝑖
)2

𝑛
(47)

𝑅𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑛
∑𝑛

𝑖=1
(

𝑦𝑖 − 𝑦∗𝑖
)2

∑𝑛
𝑖=1

(

𝑦∗𝑖
)2

(48)

𝑃𝑟𝑠 =
∑𝑛

𝑖=1
(

𝑦𝑖 − �̄�
)(

𝑦𝑖 − 𝑦∗
)

√

∑𝑛
𝑖=1

(

𝑦𝑖 − �̄�
)2
√

∑𝑛
𝑖=1

(

𝑦𝑖 − 𝑦∗
)2

(49)

where 𝑦𝑖 are the 𝑛 data, 𝑦∗𝑖  are the predicted values, �̄� is the mean of 
the data and 𝑦∗ is the mean of the predicted values. 𝑛𝑝 is the number of 
parameters used in the regression model.

To judge the quality of the regressions by means of the above men-
tioned parameters it is worthy to consider that 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are at-
tributes to maximise, while 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆𝐸 are attributes 
to minimise.

The regression quality assessment is here performed in two steps. 
Firstly, the quality is assessed on the training set used to determine 
the regression structures. This assessment allows to judge the perfor-
mances of the conventional regression techniques such as simple and 
multiple linear regressions, but may be not suitable for machine learn-
ing approaches like the forest trees as it may be affected by overfitting 
issues (even though the algorithm itself is minimising the issue com-
pared to traditional trees regression models). For this purpose, a second 
step is needed to judge the regressions by using the test set (not used to 
determine the regression models), thus providing a proof of the general 
applicability of the obtained regressions.

5.  Regression results

This section presents the results of the regression analysis performed 
according to the methods described in Section 4, thus with simple, mul-
tivariate regressions and forest tree. Results are explained by mean of 
graphs and tables, comparing, where possible, the results with the stud-
ies available in the literature.

5.1.  Simple regressions

Simple regression analysis has been carried out considering three 
typologies of regression: linear regression, power regression and loga-
rithmic regression. Besides, different independent variables have been 
considered to carry out the regression analysis, the deadweight 𝐷𝑊 𝑇 , 
the displacement Δ, the lane metres 𝐿𝑀 and the length 𝐿. This sec-
tion reports the results of the simple regression analysis, comparing the 
different typologies of regressions tested among them and with the lit-
erature studies previously described in Section 2.

5.1.1.  Regressions as a function of 𝐷𝑊 𝑇
As mentioned above, the regressions as a function of 𝐷𝑊 𝑇  have 

been performed according to a linear, a power and a logarithmic model. 
The following formulae have been derived for all the variables of the 
database (except, of course, for 𝐷𝑊 𝑇 ) according to the linear model 
expressed by Eq. (37):

𝐿 = 0.0091(𝐷𝑊 𝑇 ) + 115.9789 (50)

𝐵 = 0.0009(𝐷𝑊 𝑇 ) + 20.5499 (51)

𝐷 = 0.0002(𝐷𝑊 𝑇 ) + 11.5837 (52)

𝑇 = 0.0001(𝐷𝑊 𝑇 ) + 5.7960 (53)

Δ = 2.0746(𝐷𝑊 𝑇 ) + 5724.4001 (54)

𝑃𝐵 = 0.6073(𝐷𝑊 𝑇 ) + 28796.9300 (55)

𝑉𝑠 = −0.0001(𝐷𝑊 𝑇 ) + 24.8490 (56)

𝑁𝑝 = −0.0257(𝐷𝑊 𝑇 ) + 1513.5019 (57)

𝐿𝑀 = 0.3675(𝐷𝑊 𝑇 ) − 289.7683 (58)

The application of a power model according to Eq. (40) leads to the 
following formulae:

𝐿 = 10.6444(𝐷𝑊 𝑇 )0.3207 (59)

𝐵 = 4.3893(𝐷𝑊 𝑇 )0.2054 (60)

𝐷 = 5.1065(𝐷𝑊 𝑇 )0.0984 (61)

𝑇 = 2.0488(𝐷𝑊 𝑇 )0.1316 (62)

Δ = 35.6960(𝐷𝑊 𝑇 )0.7159 (63)

𝑃𝐵 = 1534.6988(𝐷𝑊 𝑇 )0.3386 (64)
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Fig. 23. Simple regressions on the present database as a function of 𝐷𝑊 𝑇 .

𝑉𝑠 = 21.9767(𝐷𝑊 𝑇 )0.0094 (65)

𝑁𝑝 = 1253.5970(𝐷𝑊 𝑇 )−0.0112 (66)

𝐿𝑀 = 0.1819(𝐷𝑊 𝑇 )1.0624 (67)

Finally, by applying the logarithmic model of Eq. (41) the following 
formulae can be derived from the database:

𝐿 = −266.3449 + 50.8307 ln𝐷𝑊 𝑇 (68)

𝐵 = −17.6005 + 5.0609 ln𝐷𝑊 𝑇 (69)

𝐷 = 1.5114 + 1.2860 ln𝐷𝑊 𝑇 (70)

𝑇 = −0.1928 + 0.7652 ln𝐷𝑊 𝑇 (71)

Δ = −76644.9219 + 11041.8915 ln𝐷𝑊 𝑇 (72)

𝑃𝐵 = −27743.8010 + 6932.8717 ln𝐷𝑊 𝑇 (73)

𝑉𝑠 = 22.5528 + 0.1722 ln𝐷𝑊 𝑇 (74)

𝑁𝑝 = 1509.4259 − 19.9158 ln𝐷𝑊 𝑇 (75)

𝐿𝑀 = −13469.0507 + 1794.8726 ln𝐷𝑊 𝑇 (76)

Fig. 23 shows all the derived equations together with the comparison 
with available literature studies, while Table 2 reports the quality of the 
regressions obtained for the formulae as a function of 𝐷𝑊 𝑇 .

From a preliminary analysis of the results it is possible to compare 
the obtained regressions with the studies available in the literature. Con-
sidering the study of Piko (1980), it is evident that the database used 
for that study is composed of small old ship and extrapolating the re-
sults to larger ships like in the present database underestimate all the 
results. The quadratic model adopted by Piko (1980) highlights a valid-
ity only for ships with less than 2500 ton of 𝐷𝑊 𝑇 . Therefore the simple 
regressions as a function of 𝐷𝑊 𝑇  proposed in this work are for sure an 
improvement compared to the available studies. However several con-
siderations and ranking between the regression types can be made.

The simple regressions present three different models, the linear, the 
power and the logarithmic one. Analysing in detail the results of the 
quality of fit presented in Table 2, it is possible to better understand 
which one is the best model for each variable. Furthermore, it is also 
possible to assess whether a regression model is significant or not for 
the given variable. A detailed analysis variable by variable of the results 
is reported in Appendix A.

5.1.2.  Regressions as a function of Δ
As for the case of 𝐷𝑊 𝑇 , the regressions as a function of Δ have been 

also performed according to a linear, a power and a logarithmic model. 
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Table 2 
Quality of fit for the simple regressions as a function of 𝐷𝑊 𝑇 .

  Linear  Power  Logarithmic
𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.700  0.068  14.478  0.129  0.836  0.748  0.060  13.262  0.118  0.865  0.745  0.063  13.346  0.119  0.863
𝐵  0.456  0.064  2.371  0.054  0.675  0.496  0.061  2.282  0.052  0.705  0.499  0.062  2.276  0.052  0.706
𝐷  0.009  0.316  4.407  0.147  0.095  0.006  0.294  4.442  0.152  0.127  0.017  0.317  4.389  0.146  0.130
𝑇  0.221  0.060  0.471  0.022  0.470  0.383  0.053  0.420  0.019  0.622  0.412  0.051  0.409  0.019  0.642
Δ  0.611  0.158  4.0E3  3.387  0.782  0.615  0.143  4.0E3  3.400  0.786  0.590  0.164  4.1E3  3.478  0.768
𝑃𝐵  0.009  0.458  1.4E4  9.686  0.099  0.018  0.385  1.5E4  10.28  0.172  0.044  0.440  1.4E4  9.517  0.210
𝑉𝑠  0.008  0.103  3.061  0.074  0.089  0.003  0.103  3.079  0.075  0.024  0.000  0.105  3.073  0.074  0.025
𝑁𝑝  0.007  0.680  7.1E2  2.330  0.087  0.077  0.577  7.4E2  2.632  0.011  0.000  0.681  7.1E2  2.339  0.012
𝐿𝑀  0.786  0.185  4.6E2  1.169  0.887  0.780  0.178  4.7E2  1.202  0.889  0.639  0.282  6.0E2  1.520  0.799

Fig. 24. Simple regressions on the present database as a function of Δ.

By employing the linear model, according to Eq. (37), the following 
formulae can be derived:

𝐿 = 0.0036(Δ) + 107.0725 (77)

𝐵 = 0.0005(Δ) + 17.4034 (78)

𝐷 = 0.0002(Δ) + 7.6581 (79)

𝑇 = 4.6856𝐸 − 5(Δ) + 5.5705 (80)

𝐷𝑊 𝑇 = 0.2948(Δ) + 1006.3352 (81)

𝑃𝐵 = 0.7774(Δ) + 17370.90044 (82)

𝑉𝑠 = 7.1971𝐸 − 6(Δ) + 23.9167 (83)

𝑁𝑝 = .0360(Δ) + 610.7479 (84)

𝐿𝑀 = 0.1044(Δ) − 158.5059 (85)
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Table 3 
Quality of fit for the simple regressions as a function of Δ.

 Linear  Power  Logarithmic
𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.762  0.055  12.87  0.114  0.873  0.817  0.043  11.28  0.100  0.905  0.831  0.045  10.85  0.096  0.911
𝐵  0.867  0.037  1.168  0.027  0.931  0.853  0.036  1.232  0.028  0.924  0.826  0.040  1.339  0.030  0.909
𝐷  0.137  0.298  4.111  0.137  0.371  0.095  0.285  4.211  0.144  0.345  0.109  0.305  4.178  0.139  0.330
𝑇  0.319  0.057  0.441  0.020  0.565  0.459  0.051  0.393  0.018  0.680  0.491  0.049  0.381  0.017  0.701
𝐷𝑊 𝑇  0.611  0.213  1.5E3  2.174  0.782  0.579  0.177  1.5E3  2.281  0.779  0.643  0.191  1.4E3  2.085  0.801
𝑃𝐵  0.114  0.414  1.3E4  9.159  0.338  0.099  0.347  1.4E4  9.580  0.365  0.167  0.385  1.3E4  8.883  0.409
𝑉𝑠  0.000  0.105  3.073  0.074  0.015  0.007  0.104  3.063  0.074  0.105  0.011  0.106  3.056  0.074  0.108
𝑁𝑝  0.105  0.648  6.7E2  2.213  0.324  0.029  0.548  7.0E2  2.483  0.319  0.093  0.659  6.8E2  2.227  0.306
𝐿𝑀  0.447  0.313  7.4E2  1.883  0.668  0.428  0.292  7.6E2  1.960  0.666  0.449  0.294  7.4E2  1.880  0.670

The application of a power model according to Eq. (40) leads to the 
following formulae:

𝐿 = 3.2581(Δ)0.4056 (86)

𝐵 = 1.2892(Δ)0.3072 (87)

𝐷 = 0.7203(Δ)0.2865 (88)

𝑇 = 1.2094(Δ)0.1706 (89)

𝐷𝑊 𝑇 = 0.2051(Δ)1.0506 (90)

𝑃𝐵 = 40.1151(Δ)0.6713 (91)

𝑉𝑠 = 16.3955(Δ)0.0381 (92)

𝑁𝑝 = 15.1221(Δ)0.4386 (93)

𝐿𝑀 = 0.0457(Δ)1.0855 (94)

Finally, by applying the logarithmic model of Eq. (41) the following 
formulae can be derived from the database:

𝐿 = −461.4721 + 65.0390 lnΔ (95)

𝐵 = −50.9617 + 7.8903 lnΔ (96)

𝐷 = −26.0660 + 3.9443 lnΔ (97)

𝑇 = −3.4476 + 1.0113 lnΔ (98)

𝐷𝑊 𝑇 = −44878.4991 + 5261.0606 lnΔ (99)

𝑃𝐵 = −127561.0944 + 16333.9041 lnΔ (100)

𝑉𝑠 = 15.2096 + 0.8988 lnΔ (101)

𝑁𝑝 = −4481.8894 + 590.6043 lnΔ (102)

𝐿𝑀 = −15681.3318 + 1821.6192 lnΔ (103)

Fig. 24 shows the obtained regressions for the present database. For the 
case of Δ no regressions are available from the literature; therefore, no 
comparison is possible with previous studies. Table 3 reports the quality 
of fit for the regression obtained as a function of Δ.

Also in this case, the simple regressions have been carried out ac-
cording to the linear, the power and the logarithmic model. Analysing 
in detail the results reported in Table 3 it is possible to understand which 
one is the best model for each variable. A detailed variable by variable 
analysis is reported in Appendix A

5.1.3.  Regressions as a function of 𝐿𝑀
Also for the regressions as a function of the lane metres 𝐿𝑀 the 

analysis has been carried out with either liner, power and logarithmic 
model. The application of the linear model of Eq. (37) leads to the fol-
lowing formulae:

𝐿 = 0.0191(𝐿𝑀) + 135.8495 (104)

𝐵 = 0.0019(𝐿𝑀) + 22.4928 (105)

𝐷 = 0.0005(𝐿𝑀) + 11.6186 (106)

𝑇 = 0.0001(𝐿𝑀) + 6.2063 (107)

𝐷𝑊 𝑇 = 2.1410(𝐿𝑀) + 2099.3561 (108)

𝑃𝐵 = −0.1125(𝐿𝑀) + 33263.7538 (109)

𝑉𝑠 = −0.0006(𝐿𝑀) + 25.4287 (110)

𝑁𝑝 = −0.1558(𝐿𝑀) + 1687.0549 (111)

Δ = 4.2818(𝐿𝑀) + 10441.0113 (112)

The application of a power model according to Eq. (40) leads to the 
following formulae:

𝐿 = 27.1790(𝐿𝑀)0.2463 (113)

𝐵 = 8.1104(𝐿𝑀)0.1559 (114)

𝐷 = 7.4847(𝐿𝑀)0.0631 (115)

𝑇 = 3.4874(𝐿𝑀)0.0816 (116)

𝐷𝑊 𝑇 = 18.6103(𝐿𝑀)0.7677 (117)

𝑃𝐵 = 5794.5780(𝐿𝑀)0.2454 (118)

𝑉𝑠 = 26.8194(𝐿𝑀)−0.0153 (119)

𝑁𝑝 = 5419.8755(𝐿𝑀)−0.2054 (120)

Δ = 324.7679(𝐿𝑀)0.5345 (121)

Finally, by applying the logarithmic model of Eq. (41) the following 
formulae can be derived from the database:

𝐿 = −119.6957 + 39.2823 ln𝐿𝑀 (122)

𝐵 = −2.2645 + 3.8145 ln𝐿𝑀 (123)

𝐷 = 6.1339 + 0.8739 ln𝐿𝑀 (124)

𝑇 = 2.9711 + 0.4657 ln𝐿𝑀 (125)

𝐷𝑊 𝑇 = −23692.1931 + 4026.9431 ln𝐿𝑀 (126)

𝑃𝐵 = 6491.7647 + 3486.3961 ln𝐿𝑀 (127)

𝑉𝑠 = 27.2772 − 0.4228 ln𝐿𝑀 (128)

𝑁𝑝 = 3076.7567 − 229.0082 ln𝐿𝑀 (129)

Δ = −42225.0027 + 8196.2275 ln𝐿𝑀 (130)

Fig. 25 shows the obtained regressions for the present database together 
with a comparison with the regression available in the literature, in par-
ticular with the study of Kristensen (2016) and Putra et al. (2022) al-
ready presented in this work. Taking a look to the Figure allows for 
comparing the literature regression with the present database. It is evi-
dent for the regressions of Putra et al. (2022), that the validity of those 
formulae can be considered only for small vessels with less than 1000 
metres of 𝐿𝑀 . In fact, by increasing the 𝐿𝑀 the regressions are over-
estimating the variables compared to the database values.

Different is the case of the regressions proposed by Kristensen 
(2016). For the length 𝐿, there is an underestimation compared to the 
values of the present database, for the breadth 𝐵 the underestimation is 
less strong then 𝐿. Considering the depth 𝐷, the equation of Kristensen 
(2016) fit well a subpopulation of the presented data but overestimate 
the mean value of the whole database. Finally, for the draught 𝑇 , there is 
a underestimation for small vessels and an overestimation for the larger 
ones.
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Fig. 25. Simple regressions on the present database as a function of 𝐿𝑀 .

Table 4 
Quality of fit for the simple regressions as a function of 𝐿𝑀 .

 Linear  Power  Logarithmic
𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.531  0.089  18.09  0.161  0.729  0.606  0.079  16.59  0.148  0.780  0.615  0.080  16.38  0.146  0.784
𝐵  0.348  0.068  2.597  0.060  0.589  0.388  0.065  2.516  0.058  0.624  0.392  0.067  2.507  0.057  0.626
𝐷  0.013  0.316  4.396  0.147  0.117  0.012  0.294  4.454  0.153  0.104  0.010  0.317  4.403  0.147  0.104
𝑇  0.065  0.063  0.516  0.024  0.255  0.190  0.059  0.481  0.022  0.443  0.211  0.058  0.474  0.022  0.460
𝐷𝑊 𝑇  0.786  0.183  1.1E3  1.611  0.887  0.795  0.151  1.1E3  1.586  0.896  0.765  0.172  1.1E3  1.691  0.874
Δ  0.447  0.212  4.7E3  4.042  0.668  0.448  0.179  4.7E3  4.086  0.678  0.450  0.187  4.7E3  4.030  0.671
𝑃𝐵  0.000  0.465  1.4E4  9.734  0.007  0.048  0.391  1.5E4  10.45  0.091  0.015  0.451  1.4E4  9.659  0.124
𝑉𝑠  0.039  0.101  3.013  0.073  0.198  0.001  0.101  3.072  0.075  0.070  0.005  0.104  3.066  0.074  0.072
𝑁𝑝  0.048  0.665  6.9E2  2.282  0.219  0.050  0.561  7.3E2  2.592  0.149  0.028  0.669  7.0E2  2.306  0.169

For the current database, simple regressions were performed using 
the linear, power, and logarithmic models. By analysing the results in 
Table 4, it is possible to determine the best model for each variable, with 
𝐿𝑀 as the independent variable. A detailed analysis of all the results 
obtained for each variable is reported in Appendix A.

5.1.4.  Regressions as a function of 𝐿
Finally, the same analysis of the previous variables has been carried 

out on the length 𝐿. The application of the linear model of Eq. (37) 

allows for obtaining the following formulae:

Δ = 213.1201(𝐿) − 18051.2622 (131)

𝐵 = 0.0924(𝐿) + 10.1930 (132)

𝐷 = 0.0355(𝐿) + 6.4223 (133)

𝑇 = 0.0128(𝐿) + 4.2212 (134)

𝐷𝑊 𝑇 = 76.9636(𝐿) − 6846.2519 (135)

𝑃𝐵 = 200.5077(𝐿) − 2899.1137 (136)
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Fig. 26. Simple regressions on the present database as a function of 𝐿.

𝑉𝑠 = 0.0176(𝐿) + 20.9076 (137)

𝑁𝑝 = 5.3590(𝐿) + 375.1592 (138)

𝐿𝑀 = 27.7879(𝐿) − 2716.2716 (139)

The application of a power model according to Eq. (40) leads to the 
following formulae:

Δ = 0.3414(𝐿)2.1106 (140)

𝐵 = 1.2204(𝐿)0.5951 (141)

𝐷 = 1.2705(𝐿)0.4355 (142)

𝑇 = 0.9113(𝐿)0.3793 (143)

𝐷𝑊 𝑇 = 0.0200(𝐿)2.4493 (144)

𝑃𝐵 = 14.5642(𝐿)1.2732 (145)

𝑉𝑠 = 11.0828(𝐿)0.1482 (146)

𝑁𝑝 = 28.5136(𝐿)0.7120 (147)

𝐿𝑀 = 0.0028(𝐿)2.6026 (148)

Finally, by applying the logarithmic model of Eq. (41) the following 
formulae can be derived from the database:

Δ = −156096.4172 + 34046.0794 ln𝐿 (149)

𝐵 = −50.9541 + 15.0134 ln𝐿 (150)

𝐷 = −17.9308 + 5.9340 ln𝐿 (151)

𝑇 = −5.1158 + 2.2469 ln𝐿 (152)

𝐷𝑊 𝑇 = −56988.5017 + 12353.3481 ln𝐿 (153)

𝑃𝐵 = −149126.5784 + 35191.5620 ln𝐿 (154)

𝑉𝑠 = 5.9155 + 3.5061 ln𝐿 (155)

𝑁𝑝 = −3331.9941 + 901.7176 ln𝐿 (156)

𝐿𝑀 = −20448.7100 + 4387.5977 ln𝐿 (157)

Fig. 26 shows the obtained regressions for the present database, together 
with a comparison of the already presented regressions of Kristensen 
(2016) obtained as a function of 𝐿. Analysing the Figure it is possible 
to observe that for the breadth 𝐵 the regression of Kristensen (2016) 
is starting from the same level of the newly fitted regressions but the 
slope of the line is higher, resulting in an overestimation of the data 
for longer ships. Concerning the depth 𝐷, the regression of Kristensen 
(2016) is fitting well one of the subpopulation but is overestimating the 
global mean of the present database. Finally, for the draught 𝑇  the study 
of Kristensen (2016) reports two curves, indicating the maximum and 
minimum draughts with two parallel lines. The new regressions stay 

Ocean Engineering 333 (2025) 121407 

16 



Mauro and Salem

Table 5 
Quality of fit for the simple regressions as a function of 𝐿.

 Linear  Power  Logarithmic
𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐵  0.577  0.062  2.091  0.048  0.759  0.577  0.061  2.090  0.048  0.760  0.575  0.063  2.096  0.048  0.758
𝐷  0.044  0.315  4.326  0.144  0.212  0.023  0.293  4.373  0.150  0.215  0.047  0.315  4.321  0.144  0.217
𝑇  0.400  0.051  0.414  0.019  0.632  0.438  0.050  0.400  0.018  0.665  0.466  0.048  0.390  0.018  0.682
𝐷𝑊 𝑇  0.700  0.161  1.3E3  1.910  0.836  0.687  0.169  1.3E3  1.965  0.834  0.681  0.176  1.3E3  1.970  0.825
Δ  0.762  0.120  3.1E3  2.646  0.873  0.766  0.105  3.1E3  2.640  0.875  0.735  0.141  3.3E3  2.796  0.857
𝑃𝐵  0.128  0.399  1.3E4  9.089  0.358  0.082  0.350  1.4E4  9.684  0.342  0.149  0.385  1.3E4  8.979  0.386
𝑉𝑠  0.022  0.106  3.038  0.074  0.151  0.029  0.104  3.029  0.074  0.180  0.034  0.106  3.021  0.073  0.185
𝑁𝑝  0.039  0.672  7.0E2  2.293  0.198  0.032  0.563  7.2E2  2.568  0.200  0.041  0.672  7.0E2  2.290  0.204
𝐿𝑀  0.531  0.265  6.8E2  1.733  0.729  0.548  0.277  6.7E2  1.738  0.746  0.500  0.275  7.1E2  1.790  0.707

between the two lines indicating that maximum and minimum draughts 
are containing all the draughts of the present database.

Analysing in detail the results reported in Table 5 it is possible to 
understand which one is the best model for each variable, for the case of 
𝐿 as the independent variable. A detailed analysis of the results obtained 
variable by variable is performed in Appendix A.

5.1.5.  Best simple regressions
To summarise the results obtained for simple regression analysis, 

it is worth reporting which one are the best regressions obtained for 
each dependent variable. This allows a designer to clearly identify which 
equation is the most suitable to use in the prediction of main vessel 
general parameters. In the following, the best models identified for each 
variable are reported:

– Length 𝐿: the variable is described by regressions as a function of 
𝐷𝑊 𝑇 , Δ and 𝐿𝑀 . For the regressions as a function of 𝐷𝑊 𝑇 , the 
best model is provided by Eq. (59), which is a power model. The 
logarithmic model of Eq. (95) is the best option for the regressions 
as a function of Δ. For the regressions as a function of 𝐿𝑀 , also the 
logarithmic model Eq. (122) identifies the best solution.

– Breadth 𝐵: the breadth is described by all the employed independent 
variables. For the regressions as a function of 𝐷𝑊 𝑇 , the best option 
is the logarithmic model of Eq. (69). For the regressions as a function 
of Δ, Eq. (78), the linear model, gives the best quality of fit. The 
logarithmic model of Eq. (123) is the best option for the regressions 
as a function of 𝐿𝑀 , while Eq. (135) (linear model) is the best for 
regressions as a function of 𝐿.

– Depth 𝐷: the depth 𝐷 is represented by all the four independent vari-
ables employed in the analysis. For the regressions as a function of 
𝐷𝑊 𝑇 , the best model is represented by Eq. (70), which means the 
logarithmic model. The linear model represents the best solution for 
the regressions as a function of Δ Eq. (79) and for the regressions as 
a function of 𝐿𝑀 Eq. (106). The logarithmic model, represented by 
Eq. (151),is the best option for the regressions as a function of 𝐿𝑀 .

– Draught 𝑇 : for the draught 𝑇 , models are avilable for all the con-
sidered independent variables. For the regressions as a function of 
𝐷𝑊 𝑇 , the best model is the logarithmic one, represented by Eq. (71). 
The logarithmic model is the best solution also for all the remaining 
independent variables, which means it is advisable to use Eq. (98) 
for the regression as a function of Δ, Eq. (125) for the regressions as 
a function of 𝐿𝑀 , and Eq. (152) for the regressions as a function of 
𝐿.

– Displacement Δ: the displacement Δ is represented by the models ob-
tained as a function of 𝐷𝑊 𝑇 , 𝐿𝑀 and 𝐿. For the regressions as a 
function of 𝐷𝑊 𝑇 , the best solution is provided by the power model, 
represented by Eq. (63). For the regressions as a function of 𝐿𝑀 , the 
best option is the logarithmic model of Eq. (126), while the power 
model of Eq. (140) is the best solution for the regressions as a func-
tion of 𝐿.

– Deadweigth 𝐷𝑊 𝑇 : models for 𝐷𝑊 𝑇  are obtained as a function of Δ, 
𝐿𝑀 and 𝐿. The logarithmic model of Eq. (96) is the best solution for 

the regressions as a function of Δ. For the regressions as a function 
of 𝐿𝑀 , the best option is provided by the power model of Eq. (117). 
The linear model of Eq. (135) is the best solution for the regressions 
as a function of 𝐿.

– Installed power 𝑃𝐵 : the installed power 𝑃𝐵 is modelled for all the 
four independent variables considered in the study. The logarithmic 
model is the best solution for the regressions as a function of 𝐷𝑊 𝑇 , 
Δ and 𝐿, represented by Eqs.  (73), (100), and (154), respectively. 
The power model of Eq. (118), is the best solution for the regressions 
as a function of 𝐿𝑀 .

– Vessel speed 𝑉𝑠: the vessel speed 𝑉𝑠 is described by models functions 
of all the four considered independent variables. The linear model is 
the best solution for the regressions as a function of 𝐷𝑊 𝑇  and 𝐿𝑀 , 
represented by Eqs.  (56) and (110), respectively. The logarithmic 
model is the best option for the remaining two variables, resulting 
in Eq. (101) for the regressions as a function of Δ and Eq. (155) for 
the regressions as function of 𝐿.

– Number of passengers 𝑁𝑝: the number of passengers 𝑁𝑝 is described 
by the models obtained as a function of all the four considered inde-
pendent variables. The power model is the best option for regressions 
as a function of 𝐷𝑊 𝑇  and 𝐿𝑀 , represented by Eqs. (66) and (120), 
respectively. The logarithmic model represents the best solution for 
the regressions as a function of 𝐿, which means Eq. (156). For the 
regressions as a function of Δ, the best solution is the linear model, 
represented by Eq. (84).

– Lane metres 𝐿𝑀 : the lane metres 𝐿𝑀 is represented by the regres-
sions as a function of 𝐷𝑊 𝑇 , Δ and 𝐿. For the regressions as a func-
tion of 𝐷𝑊 𝑇 , the best solution is the linear model of Eq. (58). For 
the regressions as a function of Δ, the best option is the logarithmic 
model of Eq. (103). Finally, for the regressions as a function of 𝐿, 
the best solution is provided by the power model of Eq. (148).

These regression formulae will be afterwards used for the verification 
process and comparison with other regression models in Section 6.

5.2.  Multiple linear regressions

The present section presents the more relevant results of the multiple 
linear regression analysis on the RoPax database. Additional results, like 
the complete set of regression coefficient and tests on the heteroskedas-
ticity of the regressions, are reported in Appendix B. All the regression 
have been performed by starting from a complete 4th order model, elim-
inating automatically the terms not significant for the global results in 
term of quality of fit of the regression. Such an approach allows for ob-
taining the regression with the minimum number of relevant terms to 
fit the selected variable.

The results are presented grouped by the regression types, analysing 
separately the following cases:

– Regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .
– Regressions as a function of 𝑉𝑠 and 𝐿𝑀 .
– Regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .
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Fig. 27. Database values vs predicted values in multiple linear regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .

Table 6 
Quality of fit of the regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.805  0.779  0.047  11.66  0.104  0.897
𝐵  0.456  0.440  0.064  2.372  0.054  0.675
𝐷  0.209  0.106  0.254  3.936  0.131  0.457
𝑇  0.845  0.728  0.032  0.266  0.012  0.867
Δ  0.611  0.600  0.158  4.0E3  3.388  0.782
𝑃𝐵  0.843  0.806  0.178  5.8E3  3.853  0.918
𝑁𝑝  0.406  0.268  0.477  5.5E2  1.802  0.637
𝐿𝑀  0.827  0.810  0.163  4.1E2  1.054  0.909

– Regressions as a function of 𝑁𝑝 and 𝐿𝑀 .
– Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 .
– Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 .

The following subsections give a complete overview of the obtained re-
gressions and the obtained quality of fit indicators.

5.2.1.  Regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇
The first set of regressions has been performed taking into account 

𝑉𝑠 and 𝐷𝑊 𝑇  as the independent variable; therefore, regressions have 
been provided for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑁𝑝 and 𝐿𝑀 . The regression results 
in terms of coefficients and associated t-stud and p-values is reported in 
Table B.3.

Fig. 27 shows the predicted values of the regressions against the orig-
inal data for all the fitted regressions. In the picture, the spreading along 
the bisector plotted in red highlights the deviation of the predicted data 
from the database one; therefore, the more scattered is the diagram the 
worst is the quality of fit of the regression. As for the simple regressions 
in the previous section, the quality of fit has been evaluated according 
to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠 indicator. In addition, as 
it is usual for multiple linear regression analysis, the 𝑅2

𝑎𝑑𝑗 has been also 
evaluated for all the regressions.

Table 6 reports the quality of fit indicators for all the dependent 
variable regressions. A detailed analysis of the results is reported in
Appendix A.

5.2.2.  Regressions as a function of 𝑉𝑠 and 𝐿𝑀
An alternative to the previous set of regression is given by consider-

ing 𝐿𝑀 as an independent variable in place of 𝐷𝑊 𝑇 . By adopting such 

Table 7 
Quality of fit of the regressions as a function of 𝑉𝑠 and 𝐿𝑀 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.703  0.669  0.061  14.41  0.128  0.838
𝐵  0.348  0.328  0.068  2.597  0.060  0.589
𝐷  0.237  0.138  0.242  3.865  0.129  0.487
𝑇  0.681  0.627  0.034  0.301  0.014  0.825
𝐷𝑊 𝑇  0.845  0.830  0.127  9.5E2  1.373  0.919
Δ  0.535  0.482  0.176  4.3E3  3.706  0.731
𝑃𝐵  0.796  0.777  0.198  6.6E3  4.387  0.892
𝑁𝑝  0.338  0.281  0.490  5.8E2  1.903  0.581

kind of initial set, regressions can be obtained for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑁𝑝
and 𝐷𝑊 𝑇 . The regression results in terms of coefficients and associated 
t-stud and p-values is reported in Table B.4.

Fig. 28 shows the predicted values of the regressions against the orig-
inal data for all the fitted regressions. As per the previous example, the 
picture is useful to roughly understand the quality of the regression from 
the spreading of the data set. The detailed analysis of the quality of fit 
is performed according to the 𝑅2, 𝑅2

𝑎𝑑𝑗 , 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 
𝑃𝑟𝑠 indicators.

Table 7 reports the obtained quality of fit indicators for all the con-
sidered dependent variables. A detailed analysis of the results, with 
considerations provided for each of the analised variables is reported
in Appendix A.

5.2.3.  Regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇
Alternative set of independent variable is composed of 𝑁𝑝 and 𝐷𝑊 𝑇 . 

By adopting this set of independent variable, regressions can be ob-
tained for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑉𝑠 and 𝐿𝑀 . The regression results in 
terms of coefficients and associated t-stud and p-values are reported in
Table B.5.

Fig. 29 shows the predicted values of the regressions against the orig-
inal data for the fitted regressions. Such a picture allows for a graphical 
recognition of the quality of fit of the regressions, by considering the 
scattering of the plotted datasets. The detailed analysis of the quality of 
fit is performed with the 𝑅2, 𝑅2

𝑎𝑑𝑗 , 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠
indicators.

Table 8 reports the obtained quality of fit indicators for all the se-
lected dependent variables. A detailed analysis of the variables obtained 
for each of the regressions is reported in Appendix A.
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Fig. 28. Database values vs predicted values in multiple linear regressions as a function of 𝑉𝑠 and 𝐿𝑀 .

Fig. 29. Database values vs predicted values in multiple linear regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .

Table 8 
Quality of fit of the regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.849  0.818  0.045  10.24  0.091  0.921
𝐵  0.731  0.680  0.045  1.668  0.038  0.855
𝐷  0.187  0.137  0.275  3.991  0.133  0.432
𝑇  0.829  0.796  0.026  0.221  0.010  0.910
Δ  0.815  0.780  0.112  2.7E3  2.338  0.902
𝑃𝐵  0.548  0.462  0.294  9.9E3  6.541  0.740
𝑉𝑠  0.271  0.226  0.090  2.623  0.063  0.521
𝐿𝑀  0.817  0.806  0.177  4.3E2  1.082  0.904

5.2.4.  Regressions as a function of 𝑁𝑝 and 𝐿𝑀
As performed for the regression including 𝑉𝑠, also for 𝑁𝑝 it is possible 

to switch the second independent variable from 𝐷𝑊 𝑇  to 𝐿𝑀 , obtaining 
this new set of multiple linear regressions. By adopting this new set of 
independent variables it is possible obtaining regressions for 𝐿, 𝐵, 𝐷, 
𝑇 , Δ, 𝑃𝐵 , 𝑉𝑠 and 𝐷𝑊 𝑇 . The regressions results in terms of coefficients 
and associated t-stud and p-values is reported in Table B.6.

Fig. 30 shows the predicted values of the regressions against the orig-
inal data for all the fitted regressions. The figure is useful for a fast qual-
itative understanding of the quality of fit of the regression, by looking at 
the spreading of the fitted dataset. The deteiled analysis of the quality 
of fit is performed according to the 𝑅2, 𝑅2

𝑎𝑑𝑗 , 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸
and 𝑃𝑟𝑠 indicators.

Table 9 reports the obtained quality of fit indicators for all the 
considered variables. A detailed analysis of the results is reported in
Appendix A.

5.2.5.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇
The previous set of multiple linear regressions was a function of two 

independent variables not strictly correlated between each other. How-
ever, it is possible to increase also the number of not correlated indepen-
dent variables, selecting besides 𝑉𝑠 and 𝑁𝑝 either 𝐷𝑊 𝑇  or 𝐿𝑀 . In this 
section the regressions as a function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  are presented. 
By adopting this set of independent variables it is possible obtaining 
regressions for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 and 𝐿𝑀 . The regression results in 
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Fig. 30. Database values vs predicted values in multiple linear regressions as a function of 𝑁𝑝 and 𝐿𝑀 .

Fig. 31. Database values vs predicted values in multiple linear regressions as a function of𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 .

Table 9 
Quality of fit of the regressions as a function of 𝑁𝑝 and 𝐿𝑀 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.807  0.785  0.054  11.61  0.103  0.898
𝐵  0.732  0.687  0.046  1.662  0.038  0.856
𝐷  0.229  0.169  0.272  3.885  0.129  0.479
𝑇  0.764  0.718  0.030  0.259  0.012  0.874
𝐷𝑊 𝑇  0.838  0.823  0.136  9.7E2  1.400  0.915
Δ  0.725  0.699  0.137  3.3E3  2.846  0.852
𝑃𝐵  0.525  0.453  0.291  1.0E4  6.709  0.724
𝑉𝑠  0.431  0.356  0.075  2.318  0.056  0.656

terms of coefficients and associated t-stud and p-values are reported in 
Tables B.7 and B.8.

Fig. 31 shows the predicted values of the regressions against the orig-
inal data for all the fitted regression in order to have a global overview 
of the quality of fit of the obtained models. The detailed analysis of the 

Table 10 
Quality of fit of the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.908  0.865  0.032  8.005  0.071  0.953
𝐵  0.836  0.802  0.037  1.301  0.030  0.914
𝐷  0.473  0.314  0.205  3.213  0.107  0.688
𝑇  0.877  0.840  0.023  0.187  0.009  0.936
Δ  0.883  0.861  0.079  2.2E3  1.857  0.939
𝑃𝐵  0.842  0.818  0.167  5.8E3  3.866  0.917
𝐿𝑀  0.856  0.826  0.130  3.8E2  0.960  0.925

quality of fit is performed according to the 𝑅2, 𝑅2
𝑎𝑑𝑗 , 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 

𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠 indicators.
Table 10 reports the obtained quality of fit indicators for all the con-

sidered variables. A detailed variable by variable analysis of the ob-
tained regressions is provided in Appendix A.
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Fig. 32. Database values vs predicted values in multiple linear regressions as a function of𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 .

Table 11 
Quality of fit of the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 .

𝑅2 𝑅2
𝑎𝑑𝑗 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.900  0.875  0.035  8.343  0.074  0.948
𝐵  0.874  0.823  0.028  1.139  0.026  0.935
𝐷  0.410  0.285  0.219  3.400  0.113  0.640
𝑇  0.867  0.809  0.022  0.194  0.009  0.931
𝐷𝑊 𝑇  0.870  0.843  0.123  8.7E2  1.254  0.933
Δ  0.847  0.808  0.106  2.5E3  2.126  0.920
𝑃𝐵  0.910  0.865  0.104  4.4E3  2.920  0.953

5.2.6.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀
As for the case of two independent variables, it is possible to switch 

between 𝐿𝑀 and 𝐷𝑊 𝑇  as additional variable to 𝑉𝑠 and 𝑁𝑝. Here the 
case of 𝐿𝑀 is analysed, resulting in the reproduction of regression mod-
els for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 and 𝐷𝑊 𝑇 . The regression results in term of co-
efficients, and associated t-stud and p-values are reported in Tables B.9 
and B.10.

Fig. 32 shows the predicted values of the regressions against the orig-
inal data for all the fitted regressions. As for the previous cases, the plot 
allows for checking the quality of the regression according to the spread-
ing of the dataset. The detailed analysis of the quality of fit is performed 
according to the 𝑅2, 𝑅2

𝑎𝑑𝑗 , 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠 indica-
tors.

Table 11 reports the obtained quality of fit indicators for all the con-
sidered variables. Appendix A reports a detailed variable by variable 
analysis of the results.

5.3.  Forest tree

Apart from multiple linear regressions, forest tree regressions are an 
advanced technique well-suited to investigating how the main dimen-
sions of RoPax ships depend on one or more parameters. The forest tree 
algorithm allows the classification of the output through the averaged 
prediction of more individual trees (Ho, 1998), thus reducing the over-
fitting problem of individual trees. Here, the MATLAB application for 
the determination of forest tree is applied to the database, providing 
regression for the quantities of interest.

The ensemble aggregation method employed in the calculation uses a 
least squares boosting, with a maximum number of 100 learning cycles. 
The hyperparameters are automatically optimised by the algorithm, by 

searching for the best tree objects increasing the fitting quality at each 
learning cycle.

The analysis has been performed for the same conditions of the mul-
tiple linear regression analysis, thus employing the same combinations 
of independent variables described in the previous sections. In the fol-
lowing, the detailed vision of the obtained forest tree is given, keeping 
in mind that the method is a black-box method, therefore no explicit 
formula is available for the estimation of the design parameters.

5.3.1.  Forest trees as a function of 𝑉𝑠 and 𝐷𝑊 𝑇
Taking into consideration 𝑉𝑠 and 𝐷𝑊 𝑇  as independent variables for 

the generation of the forest tree, it is possible to generate distinct trees 
for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑁𝑝 and 𝐿𝑀 . The quality of fit for the tree models 
is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠
indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to maximise 
and the remaining indexes to minimise to have a good quality of fit.

Fig. 33 shows the predicted variables against the original data for all 
the fitted trees, plotting also the respective predictions according to the 
multiple linear regressions (MLR in the picture) described in the previ-
ous section. The picture allows for having a direct comparison between 
the spreading of the data obtained with the forest tree and the MLR. It 
is immediately evident that the data plotted by the forest tree have less 
scattering than the predictions using MLR.

However for the effective evaluation of the quality of fit all the in-
dices have been calculated and the results are reported in Table 12. It 
has to be observed that for all the obtained models, all the indicators 
state that the forest tree have a better quality of fit than the respective 
MLR models. A detailed variable by variable analysis is performed in 
Appendix A.

5.3.2.  Forest trees as a function of 𝑉𝑠 and 𝐿𝑀
Taking into consideration 𝑉𝑠 and 𝐿𝑀 as independent variables for 

the generation of the forest tree, it is possible to generate distinct trees 
for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑁𝑝 and 𝐷𝑊 𝑇 . The quality of fit for the tree 
models is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 
𝑃𝑟𝑠 indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to maximise 
and the remaining indexes to minimise to have a good quality of fit.

Fig. 34 shows the predicted variables against the original data for all 
the fitted trees, plotting also the respective predictions according to the 
multiple linear regressions (MLR in the picture) described in the previ-
ous section. The picture allows for having a direct comparison between 
the spreading of the data obtained with the forest tree and the MLR. It 
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Fig. 33. Database values vs predicted values in forest trees as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .

Fig. 34. Database values vs predicted values in forest trees as a function of 𝑉𝑠 and 𝐿𝑀 .

Table 12 
Quality of fit of the forest trees as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .
   𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠  
 𝐿  0.993  0.005  2.578  0.023  0.996 
 𝐵  0.978  0.009  0.518  0.012  0.989 
 𝐷  0.616  0.161  2.615  0.088  0.816 
 𝑇  0.938  0.008  0.147  0.007  0.970 
 Δ  0.988  0.016  7.8E2  0.665  0.994 
 𝑃𝐵  0.959  0.044  3.1E3  2.047  0.980 
 𝑁𝑝  0.857  0.081  2.4E2  0.813  0.932 
 𝐿𝑀  0.970  0.033  1.9E2  0.503  0.985 

is immediately evident that, as for the previous case, the data plotted 
by the forest tree have less scattering than the predictions using MLR.

The quality of fit analysis is reported in Table 13, where all the in-
dicators are reported for each obtained forest tree model. As a final re-
mark, it can be observed that the obtained indicators for the quality of 
fit are all indicating that the forest tree fit better than MLR all the anal-

Table 13 
Quality of fit of the forest trees as a function of 𝑉𝑠 and 𝐿𝑀 .

𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.963  0.023  5.814  0.053  0.987
𝐵  0.941  0.008  0.847  0.019  0.971
𝐷  0.623  0.163  2.592  0.087  0.818
𝑇  0.936  0.010  0.149  0.007  0.968
𝐷𝑊 𝑇  0.978  0.038  3.9E2  0.581  0.989
Δ  0.919  0.053  2.0E3  1.743  0.959
𝑃𝐵  0.963  0.050  2.9E3  1.938  0.982
𝑁𝑝  0.818  0.116  2.7E2  0.924  0.909

ysed variables. Appendix A reports a variable by variable analysis of the 
obtained results.

5.3.3.  Forest trees as a function of 𝑁𝑝 and 𝐷𝑊 𝑇
Taking into consideration 𝑁𝑝 and 𝐷𝑊 𝑇  as independent variables 

for the generation of the forest tree, it is possible to generate distinct 
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Fig. 35. Database values vs predicted values in forest trees as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .

Table 14 
Quality of fit of the forest trees as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .
   𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠  
 𝐿  0.992  0.005  2.768  0.025  0.996 
 𝐵  0.982  0.011  0.472  0.011  0.991 
 𝐷  0.278  0.257  3.585  0.120  0.553 
 𝑇  0.953  0.006  0.127  0.006  0.977 
 Δ  0.988  0.027  7.9E2  0.677  0.994 
 𝑃𝐵  0.854  0.178  5.8E3  3.849  0.937 
 𝑉𝑠  0.721  1.052  1.633  0.040  0.862 
 𝐿𝑀  0.990  0.018  1.1E2  0.295  0.995 

trees for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑉𝑠 and 𝐿𝑀 . The quality of fit for the tree 
models is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 
𝑃𝑟𝑠 indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to maximise 
and the remaining indexes to minimise to have a good quality of fit.

Fig. 35 shows the predicted variables against the original data for all 
the fitted trees, plotting also the respective predictions according to the 
multiple linear regressions (MLR in the picture) described in the previ-
ous section. The picture allows for having a direct comparison between 
the spreading of the data obtained with the forest tree and the MLR. It 
is immediately evident that, as for the previous case, the data plotted 
by the forest tree have less scattering than the predictions using MLR.

The quality of fit analysis is reported in Table 14, where all the in-
dicators are reported for each obtained forest tree model. As a final re-
mark, comparing the quality of fit indicators, the forest tree fits better 
than the MLR all the variables, except for the depth 𝐷 where the quality 
of fit is similar between the different models. A detailed analysis of the 
obtained results is presented in Appendix A.

5.3.4.  Forest trees as a function of 𝑁𝑝 and 𝐿𝑀
Taking into consideration 𝑁𝑝 and 𝐿𝑀 as independent variables for 

the generation of the forest tree, it is possible to generate distinct trees 
for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 , 𝑉𝑠 and 𝐷𝑊 𝑇 . The quality of fit for the tree mod-
els is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 
𝑃𝑟𝑠 indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to max-
imise and the remaining indexes to minimise to have a good quality of
fit.

Fig. 36 shows the predicted variables against the original data for 
all the fitted trees, plotting also the respective predictions according to 
the multiple linear regressions (MLR in the picture) described in the 

Table 15 
Quality of fit of the forest trees as a function of 𝑁𝑝 and 𝐿𝑀 .

𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

𝐿  0.976  0.009  4.724  0.043  0.988
𝐵  0.916  0.019  1.007  0.023  0.958
𝐷  0.340  0.230  3.427  0.115  0.597
𝑇  0.930  0.008  0.156  0.007  0.967
𝐷𝑊 𝑇  0.966  0.058  4.9E2  0.723  0.986
Δ  0.974  0.028  1.1E3  0.988  0.987
𝑃𝐵  0.867  0.157  5.5E3  3.659  0.942
𝑉𝑠  0.751  0.049  1.542  0.037  0.875

previous section. The picture allows for having a direct comparison be-
tween the spreading of the data obtained with the forest tree and the 
MLR. It is immediately evident that, as for the previous case, the data 
plotted by the forest tree have less scattering than the predictions using
MLR.

Table 15 reports the quality of fit indicators for all the developed for-
est tree models. As a final remark, comparing the quality of fit indicators, 
the forest tree fits better than the MLR all the variables, except for the 
depth 𝐷 where the quality of fit is similar between the different mod-
els. Appendix A reports a detailed variable by variable analysis of the
results.

5.3.5.  Forest trees as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇
Taking into consideration 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  as independent variables 

for the generation of the forest tree, it is possible to generate distinct 
trees for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 and 𝐿𝑀 . The quality of fit for the tree models 
is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠
indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to maximise 
and the remaining indexes to minimise to have a good quality of fit.

Fig. 37 shows the predicted variables against the original data for 
all the fitted trees, plotting also the respective predictions according to 
the multiple linear regressions (MLR in the picture) described in the 
previous section. The picture allows for having a direct comparison be-
tween the spreading of the data obtained with the forest tree and the 
MLR. It is immediately evident that, as for the previous case, the data 
plotted by the forest tree have less scattering than the predictions using
MLR.

Table 16 reports the quality of fit indicators for all the developed 
forest tree models. Analysing the quality of fit indicators and comparing 
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Fig. 36. Database values vs predicted values in forest trees as a function of 𝑁𝑝 and 𝐿𝑀 .

Fig. 37. Database values vs predicted values in forest trees as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 .

Table 16 
Quality of fit of the forest trees as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 .
   𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠  
 𝐿  0.991  0.008  2.805  0.025  0.996 
 𝐵  0.969  0.008  0.610  0.014  0.985 
 𝐷  0.563  0.181  2.789  0.094  0.789 
 𝑇  0.971  0.007  0.099  0.005  0.986 
 Δ  0.989  0.016  7.4E2  0.640  0.995 
 𝑃𝐵  0.951  0.035  3.4E3  2.241  0.976 
 𝐿𝑀  0.990  0.025  1.1E2  0.298  0.995 

it with the corresponding cases of the MLR, it can be stated that for all 
the variables the forest tree models fit the data better than the MLR ones. 
A detailed analysis of the results is reported in Appendix A.

5.3.6.  Forest trees as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀
Taking into consideration 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 as independent variables 

for the generation of the forest tree, it is possible to generate distinct 

trees for 𝐿, 𝐵, 𝐷, 𝑇 , Δ, 𝑃𝐵 and 𝐷𝑊 𝑇 . The quality of fit for the tree 
models is evaluated according to the 𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 
𝑃𝑟𝑠 indicators, remembering that 𝑃𝑟𝑠 and 𝑅2 are quantities to maximise 
and the remaining indexes to minimise to have a good quality of fit.

Fig. 38 shows the predicted variables against the original data for all 
the fitted trees, plotting also the respective predictions according to the 
multiple linear regressions (MLR in the picture) described in the previ-
ous section. The picture allows for having a direct comparison between 
the spreading of the data obtained with the forest tree and the MLR. It 
is immediately evident that, as for the previous case, the data plotted 
by the forest tree have less scattering than the predictions using MLR.

Table 17 reports the quality of fit indicators for all the developed 
forest tree models. From the analysis of the quality of fit indicators, it 
can be concluded that the forest tree models have a better fitting of 
the data compared to the corresponding MLR except for the depth 𝐷. 
For 𝐷 MLR and forest tree present similar values and in both cases the 
regressions are not significant. Appendix A provides a detailed variable 
by variable analysis of the obtained results.
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Fig. 38. Database values vs predicted values in multiple linear regressions as a function of𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 .

Table 17 
Quality of fit of the forest trees as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 .
   𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠  
 𝐿  0.994  0.004  2.292  0.021  0.997 
 𝐵  0.954  0.013  0.743  0.017  0.977 
 𝐷  0.557  0.179  2.808  0.094  0.775 
 𝑇  0.834  0.022  0.240  0.011  0.915 
 𝐷𝑊 𝑇  0.973  0.051  4.4E2  0.641  0.988 
 Δ  0.959  0.048  1.4E3  1.243  0.980 
 𝑃𝐵  0.958  0.034  3.1E3  2.074  0.980 

6.  Models verification and remarks

In the previous section, the simple regression, the multiple linear re-
gression and the forest tree analysis have been presented with reference 
to the training set employed for their development. Such an analysis 
allows for establishing the intrinsic quality of fit of the models but is 
not giving an indication of the possible generalisation of the model to 
different ships. To this end, the obtained models will be here applied to 
the test set held out from the initial database, which means consider-
ing ships not used in the development of regression models. Evaluating 
the quality of fit of the models on this dataset may allow for a wider 
comprehension of the significance of the obtained models and the es-
tablishment of a ranking among the different formulations. Afterwards, 
some concluding remarks will be drawn, concerning the obtained results 
on the test set and the general behaviour of the prediction models.

6.1.  Model verification

To verify the possible application of the models derived in Section 5 
to a general set of new vessels, it is handy to verify the quality of fit of 
the regressions on a dataset external from the training set. Therefore, 
this section presents the application of the described models to the test 
dataset introduced in Section 4.

To judge the quality of fit on the test set, the same strategy explained 
for the training set is applied, making use of the performance indicators 
𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠. The results are presented per 
independent variable, analysing which is the best model among the dif-
ferent proposed solutions. To facilitate the representation of the results, 
the models obtained for the multiple linear regressions and forest tree 
models have been renamed as follows:

– Models as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 : the MLR model is identified 
by mlr-0 and the forest tree by ft-0.

– Models as function of 𝑉𝑠 and 𝐿𝑀 : the MLR model is identified by 
mlr-1 and the forest tree by ft-1.

– Models as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 : the MLR model is identified 
by mlr-2 and the forest tree by ft-2.

– Models as a function of 𝑁𝑝 and 𝐿𝑀 : the MLR model is identified by 
mlr-3 and the forest tree by ft-3.

– Models as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 : the MLR model is identified 
by mlr-4 and the forest tree by ft-4.

– Models as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 : the MLR model is identified 
by mlr-5 and the forest tree by ft-5.

For the simple regressions, only the best model for each of the four 
categories (given 𝐷𝑊 𝑇 , given Δ, given 𝐿𝑀 and given 𝐿) is analysed, 
according to the ranking provided by the quality of fit study on the 
training set.

6.2.  Length 𝐿

All multiple linear regressions and forest tree models describe the 
length. For the simple regressions, only the models as a function of 
𝐷𝑊 𝑇 , Δ and 𝐿𝑀 are present. In the specific, according to the study on 
the training set, the power model is selected for the function of 𝐷𝑊 𝑇 , 
the logarithmic for the function of Δ and 𝐿𝑀 . The results of quality of 
fit obtained for the test set is reported in Table 18.

From a first observation of the obtained quality of fit indicators, it 
can be stated that the regression models are significant for the indepen-
dent variable 𝐿, except for the forest tree models ft-0,ft-2 and ft-4. For 
the three cited models, the quality of fit values highlight a drastic de-
crease compared to the ones obtained using the training set, suggesting 
that the three provided models are not predicting well 𝐿 for a general 
set of ships. The quality of fit values obtained for the other models differ 
from the ones obtained with the training set but remains significant for 
the selected variable.

In conclusion, for the estimation of 𝐿 the models giving the higher 
quality of fit are the forest tree ft-1, ft-3 and ft-5. However, for estimating 
𝐿, also the conventional simple regressions could provide a significant 
estimate as well as the multiple linear regressions. Therefore, according 
to the dependent variables available by designers in the early design 
stage, the corresponding provided simple and multiple regression mod-
els can be employed for a new Ro-Pax vessel.

Ocean Engineering 333 (2025) 121407 

25 



Mauro and Salem

Table 18 
Quality of fit on the test set for the 𝐿 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.813  0.070  14.03  0.267  0.912
 Given Δ  0.878  0.053  12.07  0.217  0.938
 Given 𝐿𝑀  0.756  0.079  16.02  0.304  0.874

MLR

 mlr-0  0.889  0.059  11.15  0.206  0.947
 mlr-1  0.889  0.058  11.17  0.204  0.956
 mlr-2  0.864  0.058  12.31  0.228  0.932
 mlr-3  0.866  0.064  12.27  0.226  0.932
 mlr-4  0.765  0.082  16.23  0.297  0.894
 mlr-5  0.829  0.072  13.85  0.256  0.925

Forest tree

 ft-0  0.631  0.018  9.911  0.177  0.812
 ft-1  0.912  0.021  4.843  0.087  0.963
 ft-2  0.505  0.022  11.48  0.205  0.746
 ft-3  0.914  0.009  4.779  0.086  0.960
 ft-4  0.538  0.027  11.08  0.198  0.760
 ft-5  0.916  0.013  4.722  0.085  0.958

Table 19 
Quality of fit on the test set for the 𝐵 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.728  0.067  1.896  0.089  0.883
 Given Δ  0.838  0.047  1.461  0.070  0.917
 Given 𝐿  0.568  0.077  3.944  0.114  0.764
 Given 𝐿𝑀  0.771  0.062  2.404  0.083  0.904

MLR

 mlr-0  0.699  0.068  1.990  0.094  0.888
 mlr-1  0.651  0.075  2.145  0.101  0.868
 mlr-2  0.670  0.058  2.086  0.099  0.821
 mlr-3  0.738  0.050  1.858  0.089  0.862
 mlr-4  0.788  0.058  1.671  0.080  0.898
 mlr-5  0.707  0.062  1.966  0.095  0.853

Forest tree

 ft-0  0.767  0.023  1.167  0.053  0.885
 ft-1  0.541  0.025  1.637  0.075  0.754
 ft-2  0.826  0.018  1.008  0.047  0.917
 ft-3  0.699  0.018  1.327  0.062  0.856
 ft-4  0.909  0.010  0.731  0.034  0.954
 ft-5  0.640  0.025  1.452  0.068  0.814

6.3.  Breadth 𝐵

All the simple, multiple linear regressions and forest tree models de-
scribe the breadth. In the specific, according to the study on the training 
set, the logarithmic model is selected for the function of 𝐷𝑊 𝑇  and 𝐿𝑀 , 
the linear for the function of Δ and 𝐿. The results of quality of fit ob-
tained for the test set is reported in Table 19.

Taking a look to the quality of fit indicators, it can be stated that 
all the models proposed are moderate significant or significant. For the 
simple regressions, the models as a function of 𝐷𝑊 𝑇 , Δ and 𝐿𝑀 are 
significant, while the one as a function of 𝐿𝑀 is moderate significant. 
The multiple linear regression models are not giving a particular im-
provement compared to simple regressions; however, mlr-0, mlr-1 and 
mlr-2 are moderate significant, while the other are significant.

Different is the case of forest tree models. Here, the quality of fit 
values indicate that, except for model ft-1, all the models are significant. 
However, comparing the quality of fit values on the training set and the 
test set, also in this case there is a drastic decrease of the quality of fit 
for the forest tree models.

In conclusion, also for the prediction of 𝐵, a designer can use even 
the simple models proposed to achieve an improvement compared to 
available literature data. However, the best quality of fit is provided 
by the forest tree models ft-2 and ft-4, which are giving a consistent 
improvement in applicability compared to simple and multiple linear 
regression models.

6.4.  Depth 𝐷

All the simple, multiple linear regressions and forest tree models de-
scribe the depth. For the simple regression models, according to the 

Table 20 
Quality of fit on the test set for the 𝐷 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.012  0.305  3.785  0.268  0.139
 Given Δ  0.008  0.306  3.716  0.273  0.247
 Given 𝐿  0.008  0.303  3.854  0.277  0.099
 Given 𝐿𝑀  0.002  0.300  3.621  0.263  0.251

MLR

 mlr-0  0.003  0.287  4.174  0.281  0.158
 mlr-1  0.002  0.263  4.387  0.304  0.319
 mlr-2  0.040  0.265  4.040  0.275  0.186
 mlr-3  0.074  0.267  3.810  0.261  0.330
 mlr-4  0.001  0.469  6.372  0.431  0.133
 mlr-5  0.068  0.264  3.822  0.266  0.380

Forest tree

 ft-0  0.001  0.325  4.867  0.330  0.021
 ft-1  0.137  0.215  4.362  0.308  0.542
 ft-2  0.001  0.334  5.089  0.343  0.022
 ft-3  0.001  0.319  4.819  0.326  0.103
 ft-4  0.001  0.318  4.782  0.324  0.001
 ft-5  0.001  0.309  4.859  0.326  0.143

study on the training set, the logarithmic model is selected for the func-
tion of 𝐷𝑊 𝑇  and 𝐿, the linear for the function of Δ and 𝐿𝑀 . The results 
of quality of fit obtained for the test set is reported in Table 20.

Looking at the values reported in the table, none of the models is 
significant for this variable. 𝑅2 and 𝑃𝑟𝑠 indicators are extremely low, 
while the remaining indicators are quite high. It has to be observed 
that, for all models, the quality of fit indicators are worst than the values 
obtained for the training set and presented in the previous section.

In conclusion, in case a designer should choose an option to estimate 
𝐷, the best model is given by ft-1. However, also for this model, the 
regression cannot be considered as significant for the given variable.

6.5.  Draught 𝑇

All the simple, multiple linear regressions and forest tree models de-
scribe the draugth. For the simple regression models, according to the 
study on the training set, the logarithmic model is selected for all the 
dependent variables. The results of quality of fit obtained for the test set 
is reported in Table 21.

Considering the value present in the table, it can be stated that all the 
regression methods give options that are at least moderate significant for 
the selected variable. The simple models provide moderate significant 
results, with the regression according to given 𝐿 providing the best fit-
ting results. For the multiple linear regression models, the best solutions 
are provided by mlr-2 and mlr-3, which provide significant regressions 
for the given variable. In the case of forest tree, also in this case there 
is a decrease in the fitting performances by using the test set instead of 
the training set. As a consequence, the models are only moderate signif-

Table 21 
Quality of fit on the test set for the 𝑇  prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.652  0.047  0.340  0.032  0.849
 Given Δ  0.677  0.047  0.327  0.031  0.839
 Given 𝐿  0.682  0.045  0.324  0.031  0.846
 Given 𝐿𝑀  0.494  0.062  0.410  0.039  0.754

MLR

 mlr-0  0.679  0.045  0.327  0.031  0.869
 mlr-1  0.576  0.048  0.376  0.036  0.825
 mlr-2  0.841  0.032  0.230  0.022  0.919
 mlr-3  0.814  0.029  0.249  0.024  0.921
 mlr-4  0.708  0.043  0.312  0.030  0.892
 mlr-5  0.390  0.055  0.451  0.044  0.817

Forest tree

 ft-0  0.306  0.032  0.279  0.026  0.557
 ft-1  0.261  0.038  0.288  0.027  0.514
 ft-2  0.671  0.020  0.192  0.018  0.827
 ft-3  0.691  0.021  0.186  0.018  0.836
 ft-4  0.310  0.034  0.278  0.026  0.618
 ft-5  0.654  0.021  0.197  0.019  0.823
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Table 22 
Quality of fit on the test set for the Δ prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.877  0.134  2.6E3  4.607  0.952
 Given 𝐿  0.865  0.124  2.7E3  4.908  0.930
 Given 𝐿𝑀  0.892  0.135  2.4E3  4.343  0.952

MLR

 mlr-0  0.865  0.172  2.7E3  4.785  0.962
 mlr-1  0.802  0.233  3.3E3  5.849  0.903
 mlr-2  0.877  0.140  2.6E3  4.625  0.942
 mlr-3  0.884  0.147  2.5E3  4.461  0.949
 mlr-4  0.912  0.118  2.2E3  3.944  0.970
 mlr-5  0.884  0.166  2.5E3  4.442  0.951

Forest tree

 ft-0  0.666  0.073  2.4E3  3.945  0.839
 ft-1  0.001  0.154  4.2E3  7.090  0.337
 ft-2  0.956  0.029  865.9  1.457  0.978
 ft-3  0.662  0.104  2.4E3  4.062  0.816
 ft-4  0.801  0.038  1.8E3  3.069  0.904
 ft-5  0.880  0.053  1.4E3  2.377  0.954

icant, performing worst than the multiple linear regression models. In 
several cases, like for ft-0, ft-1 and ft-4 the goodness of fit indicators are 
less good than the simple regressions.

In conclusion, if a designer want to estimate the draught 𝑇 , it is 
suggested to use either model mlr-2 or mlr-3, resulting in a significant 
improvement compared to regressions available in the literature.

6.6.  Displacement Δ

All the multiple linear regressions and forest tree models describe the 
displacement. For the simple regression models, according to the study 
on the training set, the power model is selected for the function of 𝐷𝑊 𝑇
and 𝐿, the logarithmic model for the function of 𝐿𝑀 . Of course, no 
model is present as a function of Δ. The results of quality of fit obtained 
for the test set is reported in Table 22.

The values in the Table highlights that all the regression method-
ologies employed provides at least one model which is significant for 
the selected variable. Considering the simple regressions, the best solu-
tion is given by the model as a function of 𝐿𝑀 ; however, also the other 
two models have similar performance indicators and, therefore, could 
be used as a suitable alternative. The multiple linear regression models 
are all significant for the selected variable. The best solution is given 
by mlr-4; however, also other models like mlr-3 and mlr-5 give similar 
performance indicators. Different is the case of forest tree models. Here 
there is a scattering between the models. There are models like ft-1 that 
are not significant for the given variable, and models like ft-2 which 
have extremely good performance indicators. In any case, also for the 
displacement, there is a huge difference between the quality of fit in-
dicators obtained for the forest tree models by using the test and the 
training set, observing a drastic reduction of the quality of fit for most 
of the tested models.

In conclusion, for the estimation of Δ a designer could choose ft-2 as 
the best option. However, modelmlr-4 is a suitable alternative. The best 
models of each category provide a suitable estimation of the displace-
ment.

6.7.  Deadweight 𝐷𝑊 𝑇

The deadweight is not described by all the multiple linear regres-
sion and forest tree models. Only models mlr-1, mlr-3, mlr-5 and, con-
sequently, ft-1, ft-3 and ft-5 describe the considered variable. For the 
simple regression models, according to the study on the training set, the 
logarithmic model is selected for the function of Δ, the power model 
for the function of 𝐿𝑀 and the linear model for the function of 𝐿. Of 
course, no model is present as a function of 𝐷𝑊 𝑇 . The results of quality 
of fit obtained for the test set is reported in Table 23.

The values reported in the table indicates that the models obtained 
with simple regressions and multiple linear regressions are all signif-

Table 23 
Quality of fit on the test set for the 𝐷𝑊 𝑇  prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given Δ  0.904  0.115  856.5  2.671  0.960
 Given 𝐿  0.841  0.169  1.1E3  3.408  0.924
 Given 𝐿𝑀  0.873  0.122  986.7  2.992  0.948

MLR
 mlr-1  0.902  0.134  864.1  2.655  0.960
 mlr-3  0.928  0.129  742.6  2.263  0.967
 mlr-5  0.918  0.118  791.9  2.417  0.964

Forest tree
 ft-1  0.584  0.134  1.1E3  3.054  0.772
 ft-3  0.764  0.098  795.2  2.293  0.877
 ft-5  0.609  0.133  1.0E3  2.953  0.785

icant for the selected value, while the forest tree ones are moderate 
significant. The best simple model is the one as a function of Δ but 
also the other two options give similar results for the quality of fit. For 
the multiple linear regressions all the models are extremely good, espe-
cially mlr-3. Different is the case of the forest tree models, where all the 
provided regressions underperform the goodness of fit compared to the 
values registered on the training set.

In conclusion, the best model that could be selected for the estima-
tion of 𝐷𝑊 𝑇  is mlr-3; however, also the other option given by simple 
and multiple linear regressions can be applied with good results. For 
this variable it is not advisable to use the forest tree models.

6.8.  Installed power 𝑃𝐵

All the simple, multiple linear regressions and forest tree models de-
scribe the installed power. For the simple regression models, according 
to the study on the training set, the logarithmic model is selected for the 
function of 𝐷𝑊 𝑇 , Δ and 𝐿 and the power model for 𝐿𝑀 . The results of 
quality of fit obtained for the test set is reported in Table 24.

The values of the quality of ft indicators reported in the Table high-
lights that the models obtained with the simple regressions are not sig-
nificant for this variable. However, the models obtained with the mul-
tiple regressions and forest tree provides better values for the quality 
of fit. For the multiple linear regressions, the best solution is given by 
model mlr-1, which, according to the quality of fit indicators, is moder-
ate significant for the present variable. In the case of forest tree, the best 
solution is ft-5, providing a model which is extremely significant for the 
estimation of 𝑃𝐵 .

In conclusion, the best model that can be used for the estimation 
of 𝑃𝐵 is provided by ft-5. For the case of installed power, all the pro-
vided models are an unicum in the literature, as no other regression is 
available for its estimation in the early design stage. Therefore, also the 
simpler models could be a help for RoPax designers in estimating 𝑃𝐵 .

Table 24 
Quality of fit on the test set for the 𝑃𝐵 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.114  0.447  1.2E5  15.95  0.349
 Given Δ  0.163  0.385  1.1E5  15.94  0.439
 Given 𝐿  0.345  0.336  1.0E5  14.04  0.589
 Given 𝐿𝑀  0.054  0.466  1.2E5  16.43  0.254

MLR

 mlr-0  0.513  0.235  8.7E3  11.51  0.797
 mlr-1  0.629  0.182  7.6E3  10.35  0.813
 mlr-2  0.332  0.410  1.0E4  13.94  0.641
 mlr-3  0.466  0.360  9.2E3  12.60  0.706
 mlr-4  0.618  0.221  7.8E3  10.52  0.802
 mlr-5  0.398  0.259  9.7E3  13.57  0.781

Forest tree

 ft-0  0.619  0.146  6.2E3  7.968  0.803
 ft-1  0.342  0.170  8.2E3  10.94  0.714
 ft-2  0.458  0.138  7.4E3  9.690  0.728
 ft-3  0.816  0.088  4.3E3  5.507  0.911
 ft-4  0.766  0.092  4.9E3  6.430  0.888
 ft-5  0.952  0.042  2.2E3  2.854  0.977
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Table 25 
Quality of fit on the test set for the 𝑉𝑠 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.005  0.101  3.031  0.149  0.084
 Given Δ  0.002  0.111  3.074  0.153  0.016
 Given 𝐿  0.058  0.110  2.950  0.146  0.249
 Given 𝐿𝑀  0.036  0.098  2.984  0.147  0.204

MLR
 mlr-2  0.269  0.097  2.599  0.129  0.543
 mlr-3  0.187  0.100  2.741  0.137  0.506

Forest tree  ft-2  0.001  0.112  2.973  0.147  0.001
 ft-3  0.001  0.112  2.979  0.147  0.087

6.9.  Ship speed 𝑉𝑠

The ship speed is not described by all the multiple linear regression 
and forest tree models. Only models mlr-2, mlr-3 and, consequently, ft-
2 and ft-3 describe the considered variable. For the simple regression 
models, according to the study on the training set, the logarithmic model 
is selected for the function of Δ and 𝐿, the linear model for the function 
of 𝐿𝑀 and 𝐷𝑊 𝑇 . The results of quality of fit obtained for the test set 
is reported in Table 25.

The values of the quality of fit indicators in the Table show extremely 
poor performances for all the presented models. Especially for the forest 
tree model there is a huge difference for the quality of fit indicators 
obtained on the training and the test set. Therefore, none of the models 
is significant for the present variable.

In conclusion, for the estimation of 𝑉𝑠 the best option is given by 
mlr-2. However, the model is not significant for the present variable but 
is still an unicum in the literature for the estimation of 𝑉𝑠 in the early 
design stage of RoPax ships.

6.10.  Number of passengers 𝑁𝑝

The number of passenger is not described by all the multiple linear 
regression and forest tree models. Only models mlr-0, mlr-1 and, con-
sequently, ft-0 and ft-1 describe the considered variable. For the sim-
ple regression models, according to the study on the training set, the 
power model is selected for the function of 𝐷𝑊 𝑇  and 𝐿𝑀 , the linear 
model for the function of Δ and the logarithmic model for the function 
𝐿. The results of quality of fit obtained for the test set is reported in
Table 26.

The values of the quality of fit indicators in the Table show extremely 
poor performances for all the presented models. Especially for the forest 
tree model there is a huge difference for the quality of fit indicators 
obtained on the training and the test set. Therefore, none of the models 
is significant for the present variable.

In conclusion, the best solution for the estimation of 𝑁𝑝 is given 
by ft-1. However, the poor values of the quality of fit indicators does 
not suggest to use with confidence this o one of the other models, even 
though are the sole available for the estimation of 𝑉𝑠 in the early design 
stage of a RoPax.

Table 26 
Quality of fit on the test set for the 𝑁𝑝 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.015  0.545  536.3  3.856  0.072
 Given Δ  0.095  0.479  557.1  4.105  0.133
 Given 𝐿  0.023  0.570  525.9  3.569  0.240
 Given 𝐿𝑀  0.062  0.579  548.5  3.855  0.085

MLR
 mlr-0  0.001  0.603  633.0  3.997  0.545
 mlr-1  0.170  0.504  484.7  3.199  0.613

Forest tree  ft-0  0.001  0.731  791.8  5.257  0.001
 ft-1  0.216  0.567  698.9  4.646  0.488

Table 27 
Quality of fit on the test set for the 𝐿𝑀 prediction models.
 Regression 𝑅2 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅𝑅𝑀𝑆𝐸 𝑃𝑟𝑠

Simple
 Given 𝐷𝑊 𝑇  0.818  0.205  556.8  2.993  0.934
 Given Δ  0.789  0.261  598.8  3.328  0.948
 Given 𝐿  0.721  0.332  688.7  3.791  0.878

MLR
 mlr-0  0.866  0.263  476.8  2.499  0.957
 mlr-2  0.879  0.238  452.7  2.383  0.961
 mlr-4  0.847  0.332  510.0  2.682  0.955

Forest tree
 ft-0  0.835  0.077  286.6  1.425  0.917
 ft-2  0.846  0.088  277.4  1.413  0.931
 ft-4  0.981  0.024  96.76  0.485  0.992

6.11.  Lane metres 𝐿𝑀

The lane metres are not described by all the multiple linear regres-
sion and forest tree models. Only models mlr-0, mlr-2, mlr-4 and, con-
sequently, ft-0, ft-2 and ft-4 describe the considered variable. For the 
simple regression models, according to the study on the training set, 
the power model is selected for the function of 𝐿, the linear model for 
the function of 𝐷𝑊 𝑇  and the logarithmic model for the function Δ. Of 
course, no model as a function of 𝐿𝑀 is present. The results of quality 
of fit obtained for the test set is reported in Table 27.

The results reported in the Table shows that all the provided models 
are significant for the present variable. The best option between the sim-
ple regression methodologies is the one as a function of 𝐷𝑊 𝑇  but also 
the other options have similar quality of fit indicators. For the multi-
ple linear regressions the best solution is provided by mlr-2. Also in this 
case, the other multiple regression models have similar performances. 
In the case of forest tree models, all the regressions are significant, with 
a preference for ft-4.

In conclusion, the best option for the estimation of 𝐿𝑀 is ft-4 but 
also the other models can be employed with some confidence. The avail-
ability of robust methods for the estimation of 𝐿𝑀 is a plus, as they 
represent an unicum for the literature on RoPax ships.

6.12.  Concluding remarks

This study presents and evaluates three distinct types of regression 
models for predicting the main dimensions and general particulars of 
RoPax vessels. From the analysis of the initial database presented in 
Section 3 it was immediately evident that some variables where more 
critical to analyse than others. This is the specific case of the depth 𝐷, 
where the initial distribution of data presents more than one subpopu-
lation, and other quantities like the installed power 𝑃𝐵 or the number 
of passengers 𝑁𝑝 where the spreading of data was high for large ships.

Such a behaviour has been confirmed by the execution of the re-
gression analysis presented in Section 5. In fact, the worst regressions 
remains the ones for the critical variables mentioned above. In any case, 
the execution of three different level of models highlights an increasing 
level of fidelity. Taking into consideration the quality of fit indicators 
(𝑅2, 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠) calculated in Section 5, for 
all the variables the best models are represented by regression trees. 
The second best solution is given by the multiple linear regression mod-
els, while the simple regressions provide the worst quality of fit. The 
increase of quality of MLR compared to simple regressions is given by 
the fact that, the use of more than one independent variable, allows for 
considering the correlation between one of the independent variables 
with the dependent one. This is the case, for example of 𝑃𝐵 , where the 
regressions as a function of 𝑉𝑠 capture the strong correlation between 
𝑉𝑠 and 𝑃𝐵 .

While testing the obtained regressions on a test-set, the results in 
terms of quality of fit were quite different. The models that all around 
performed better on the training set (i.e. the forest trees) were not con-
firm such a high level of fitting quality on the test set. A lot of the models 
having really high values for the training set results not significant for 
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the test set. Such a behaviour indicates that the forest tree models are 
good for reproducing exactly a population of data but, in this case, are 
not suitable to be used in a general way on a different set of ships. In 
any case, for some of the variables, forest tree models provide the best 
solution.

However, it should be highlighted that the selection of the prediction 
model that could be adopted for the estimation of main dimensions and 
general particulars depends on the initial variables at disposal by the de-
signer. Here, the simple models cover the classical methods used in the 
literature for the estimation of main dimensions. More complex models 
require the availability of more than one variable to start the prediction 
process. In the present work, the selection of the multi-variables ele-
ments has been performed by considering design issues together with 
avoiding problems of auto-correlation between variables, resulting in 
the 6 models for multiple linear regressions and other 6 for the forest 
trees.

Of utmost importance is also the reproducibility of the data. Not 
all the methods are reproducible. The simple regression provided in 
the paper are directly applicable using equations from (50) to (157). 
Multiple linear regression models can be reproduced by implementing 
the equations using the coefficients presented in Appendix B. Different 
is the case of forest tree. The method is a so-called black-box method 
as other machine learning techniques, thus the resulting model is in-
trinsically embedded in the calculation machine. Therefore, a designer 
should implement the model directly from his own database. Such a 
consideration is limiting the reproducibility of the present work. How-
ever, the potential shown by the method in terms of quality of fit is
undoubted.

The methods and equations presented in this paper can be used by 
designers according to different strategies for the determination of main 
dimensions. A potential user can estimate main dimensions according 
to the multiple linear regression method if all the required independent 
variables can be provided. Otherwise, use can be made of simple regres-
sion models, as per classical literature. In such a case, a user can estimate 
the main dimensions starting from the deadweight 𝐷𝑊 𝑇 , the displace-
ment Δ or the lane metres 𝐿𝑀 . Alternatively, could also estimate the 
length 𝐿 with one of the method above and then using the regression as 
a function of 𝐿 for the estimate of remaining parameters.

The application example on the test set shows that there is not a 
directly preferable way to proceed with; however, the application of a 
higher fidelity method gives more confidence in the obtained results.

7.  Conclusions

This paper presents a comprehensive analysis of a database compris-
ing 87 RoPax vessels, and introduces various regression techniques to 
estimate the ships’ main dimensions and other relevant general partic-
ulars during the early design phase. The study is limited to the case 
of large RoPax vessels, having a length longer than 100 metres, and it 
is not advisable to adopt the obtained regressions outside their limit-
ing range. The dataset was split into training and test subsets to enable 
model development and validation, respectively. Starting from the im-
plementation of simple regression models as a function of deadweight, 
displacement, lane meters and length, multiple linear regression mod-
els have been provided to enhance the capability of the fitting models, 
by considering more than one independent variable. Besides, machine 
learning techniques have been also implemented in the form of forest 
trees to further enhance the quality of the obtained regression models.

As first result, the comparison between the available models in 
the literature for RoPax and the simple regressions provided in this 
work highlights how the literature models doesn’t fit well the current 
database. This is mainly due to the age of the vessels considered in the 
analysis as the present database uses modern ships, while the previous 
studies employ quite old vessels. Therefore, the provided simple regres-
sion models as a function of the deadweight, displacement, lane metres 
and length are a consistent improvement compared to literature data.

As a second result, the paper provides 46 multiple linear regression 
models for the main dimensions and general particulars of RoPax ves-
sels, employing couple or triplets of independent variables for the analy-
sis. The detailed analysis of the regressions, reported in the paper and in 
the appendix, highlight the quality of the provided models, which repre-
sent an improvement compared to the simple regression models for the 
quality of fit. The multiple linear regressions are capable of providing a 
higher quality of fit compared to the simple regression models, allowing 
the designers to take into consideration more than one single indepen-
dent variable as initial parameter for the main dimensions estimation.

Finally, the work provides the results and analysis of 46 forest tree 
models for the prediction of the main dimension and general particulars 
of RoPax vessel. The forest tree models are generated employing the 
same independent variables of the multiple linear regression models. 
Forest trees have a better quality of fit of all the previous model, as 
indicated by all the performance indicators employed in the study. Such 
a machine learning technique is powerful for the prediction of main 
dimension of the vessel; however, the technique is a black-box model 
and is not easy to reproduce from this study. Furthermore, the testing 
on the test set highlights that not all the models grant the same quality 
of fit obtained on the training set.

In any case, the application of all the presented methods to the test 
set highlights that suitable prediction can be performed also with simple 
regression models or multiple linear regressions. The provided models 
have a high level of reliability except for the depth of the ship, because 
of a strange initial population in the database. However, between the 
main dimensions, the depth is the less relevant, as it could be derived 
from regulations while the draught is known.

This study underscores the necessity of examining more modern 
databases to develop models that aid designers in estimating the main 
particulars of ships. It emphasizes that modern machine learning tech-
niques, alongside conventional methods, can also be employed in pre-
dictions, even though a larger initial population sample is advisable. To 
further this purpose, additional research will be conducted on different 
vessel types to determine if the findings of this work on RoPax vessels 
can be extended to other ships.

CRediT authorship contribution statement

Francesco Mauro: Writing – review & editing, Writing – original 
draft, Validation, Software, Methodology, Investigation, Formal analy-
sis, Data curation, Conceptualization; Ahmed Salem: Writing – review 
& editing, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial-
interestsor personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A.  Detailed analysis of the obtained regressions

The present appendix reports a detailed analysis of the regressions 
obtained by all the three proposed regression methods, providing to the 
reader a more in-depth overview of the results presented by the present 
research. Therefore, the following subsections reports the results ob-
tained for simple, multiple regressions and forest three results.

A.1.  Simple regressions

Here the results of the simple regression analysis are reported dis-
tinguishing between the cases obtained by using the four independent 
variables 𝐷𝑊 𝑇 , Δ, 𝐿𝑀 and 𝐿.
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A.1.1.  Regressions as a function of 𝐷𝑊 𝑇
Hereafter a detailed analysis is performed variable by variable for 

the regressions presented in Section 5.1.1:
– Length 𝐿: the length can be modelled according to formulae (50), 
(59), and (68). All the quality of fit indicators in Table 2 suggest 
that the best fit option for 𝐿 is the power model expressed by formula 
(59). The level of indicators like 𝑅2 or 𝑃𝑟𝑠 state that the regression 
is significant for the selected variable.

– Breadth 𝐵: the breadth can be modelled according to formulae (51), 
(60), and (69). Also in this case, all the quality of fit indicators in 
Table 2 suggest that the best fit option is given by the power model 
of formula (60). The level of indicators like 𝑅2 or 𝑃𝑟𝑠 state that the 
regression is moderate significant for the selected variable.

– Depth 𝐷: the depth can be modelled according to formulae (52), (61), 
and (70). In this case, there is a discrepancy between the indica-
tions given by the fit quality indicators. According to 𝑅2, 𝑅𝑀𝑆𝐸, 
𝑅𝑅𝑀𝑆𝐸 and 𝑃𝑟𝑠 the best model is the logarithmic one of formula 
(70); but according to 𝑀𝐴𝑃𝐸 the best model is the power one of for-
mula (61). In any case, the differences between the three models are 
minimal and, therefore, the formulae can be considered equivalent. 
However, considering the extremely low level of the indicators like 
𝑅2 and 𝑃𝑟𝑠, it can be stated that the regressions are not significant 
for the selected variable.

– Draught 𝑇 : the draught can be modelled according to formulae (53), 
(62), and (71). There is a discrepancy between the quality of fit in-
dicators, as for the 𝑅2 the best model is the power one formula (62) 
while for the others the best model is the logarithmic one formula 
(71). Differences between the two formulae are not so large and, 
therefore, the models can be considered equivalent. Considering the 
level of the indicators like 𝑅2 and 𝑃𝑟𝑠, it can be stated that the re-
gression is moderate significant for the selected variable.

– Displacement Δ: the displacement can be modelled according to for-
mulae (54), (63), and (72). According to all the quality of fit indi-
cators of Table 2, the best model is the power one, expressed by 
formula (63). According to the level of the indicators like 𝑅2 and 
𝑃𝑟𝑠, the regression is significant for the selected variable.

– Installed power 𝑃𝐵 : the installed power can be modelled according 
to formulae (55), (64), and (73). in this case, there is a discrepancy 
between the quality of fit indicators, as the best model for 𝑅2 is the 
power one of formula (64), while for the others the best model is the 
logarithmic of formula (73). In any case, the quality of fit is so low 
that both models can be considered not significant for the selected 
variable.

– Speed 𝑉𝑠: the speed can be modelled according to formulae (56), (65), 
and (74). According to the quality of fit indicators of Table 2, the best 
model is the linear one of formula (56). However, the level of indi-
cators like 𝑅2 and 𝑃𝑟𝑠 indicate that the regression is not significant 
for the selected variable.

– Number of passengers 𝑁𝑝: the number of passengers can be modelled 
according to formulae (57), (66), and (75). According to the quality 
of fit indicators of Table 2, the best model is the linear one of formula 
(57). However, the level of indicators like 𝑅2 and 𝑃𝑟𝑠 indicate that 
the regression is not significant for the selected variable.

– Lane metres 𝐿𝑀 : the lane meters can be modelled according to for-
mulae (58), (67), and (76). According to the quality of fit indicators 
of Table 2, the best model is the power one of formula (67). The 
level of indicators like 𝑅2 and 𝑃𝑟𝑠 allows to state that the regression 
is significant for the selected variable.

A.1.2.  Models as a function of Δ
Hereafter, a detailed analysis is presented variable by variable of the 

regressions presented in Section 5.1.2:
– Length 𝐿: the length can be modelled according to formulae (77), 
(86), and (95). Considering the quality of fit indicators of Table 3, 
the 𝑅2 values highlights the power regression of formula (86) as the 

best option, while the others indices indicate the logarithmic one 
formula (95). In any case, the values between the two formulae are 
similar and, therefore, they could be considered equivalent. Taking 
a look to the values of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression 
is significant for the selected variable.

– Breadth 𝐵: the breadth can be modelled according to formulae (78), 
(87), and (96). There is a discrepancy between the quality of fit in-
dicators in finding the best regression among the proposed models. 
𝑅𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆𝐸 indicates the linear model of formula (78) as 
the best, while the other indicators point to the power model of for-
mula (87). As the values of 𝑅𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆𝐸 are quite similar, 
it can be stated that formula (87) is the best option. The values of 
𝑅2 and 𝑃𝑟𝑠 state that the regression is significant for the selected 
variable.

– Depth 𝐷: the depth can be modelled according to formulae (79), (88), 
and (97). Considering the quality of fit indicators of Table 3, the best 
regression is the linear one of formula (79). However, considering 
the level of indicators 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression 
is not significant for the selected variable.

– Draught 𝑇 : the draught can be modelled according to formulae (80), 
(89), and (98). Taking a look to the quality of fit indicators, the 𝑅2

suggests the power regression formula (89) as the best but the other 
indicators are in favour of the logarithmic one formula (98). There-
fore, the best regression for 𝑇  is formula (98) and, considering the 
level of the indicators 𝑅2 and 𝑃𝑟𝑠, it can be stated that the regression 
is moderate significant for the variable.

– Deadweight 𝐷𝑊 𝑇 : the deadweight can be modelled according to for-
mulae (81), (90), and (99). The quality of fit indicators of Table 3 
show more variability. According to 𝑅2 and 𝑀𝐴𝑃𝐸, the best regres-
sion is formula (90), the others are in favour of formula (99). There-
fore, the logarithmic regression formula (99) can be considered as 
the best option. The level of indicators 𝑅2 and 𝑃𝑟𝑠 state that the 
regression is significant for the selected variable.

– Installed Power 𝑃𝐵 : the installed power can be modelled according to 
formulae (82), (91), and (100). The 𝑅2 and 𝑀𝐴𝑃𝐸 indicators sug-
gest the power model formula (91) as the best model, the others are 
in favour of the logarithmic one formula (100). Therefore formula 
(100) can be considered the best regression. However, the level of 
indicators 𝑅2 and 𝑃𝑟𝑠 state that the regression is not significant for 
the selected variable.

– Speed 𝑉𝑠: the speed can be modelled according to formulae (83), (92), 
and (101). 𝑅2 value suggests the power model formula (92) as the 
best regression, the other parameters the logarithmic one formula 
(101). However, the discrepancy between the two regressions is rel-
atively low and they can be considered equivalent. The level of indi-
cators 𝑅2 and 𝑃𝑟𝑠 state that the regression is not significant for the 
selected variable.

– Number of passengers 𝑁𝑝: the number of passengers can be modelled 
according to formulae (84), (93), and (102). All the indicators, ex-
cept for the 𝑃𝑟𝑠 state that the best model is the logarithmic one 
formula (102), while 𝑃𝑟𝑠 indicates the linear model formula (84). 
Therefore, formula (102) can be considered as the best model. The 
level of indicators 𝑅2 and 𝑃𝑟𝑠 state that the regression is not signif-
icant for the selected variable.

– Lane metres 𝐿𝑀 : the lane metres can be modelled according to for-
mulae (85), (94), and (103). Except for 𝑅2, the indicators of Table 3 
suggest the linear model formula (85) as the best model, the 𝑅2 in-
dicates the power one formula (94). Therefore, the linear model can 
be considered as the best regression among the three available op-
tions. The level of indicators 𝑅2 and 𝑃𝑟𝑠 state that the regression is 
moderate significant for the selected variable.

A.1.3.  Models as a function of 𝐿𝑀
A detailed analysis of each variable of the models presented in Sec-

tion 5.1.3 is presented below:
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– Length 𝐿: the length can be modelled according to formulae (104), 
(113), and (122). Considering the quality of fit indicators of Table 4, 
the best model for 𝑅2 and 𝑀𝐴𝑃𝐸 is the power one formula (113) 
while for the others is the logarithmic model formula (122). There-
fore, the best model can be the logarithmic regression. According to 
the level of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression model is 
moderate significant for the present variable.

– Breadth 𝐵: the breadth can be modelled according to formulae (105), 
(114), and (123). Considering the quality of fit indicators of Table 4, 
the best model for 𝑅2 and 𝑀𝐴𝑃𝐸 is the power one formula (114) 
while for the others is the logarithmic model formula (123). The 
difference between the two models is relatively small; therefore, they 
can be considered equivalent. According to the level of 𝑅2 and 𝑃𝑟𝑠
it can be stated that the regression model is moderate significant for 
the present variable.

– Depth 𝐷: the depth can be modelled according to formulae (106), 
(115), and (124). Considering the quality of fit indicators of Table 4, 
the best model is the linear one of formula (106). According to the 
level of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression is not signifi-
cant for the present variable.

– Draught 𝑇 : the draught can be modelled according to formulae (107), 
(116), and (125). Considering the quality of fit indicators of Table 4, 
the best model for 𝑅2 and 𝑀𝐴𝑃𝐸 is the power one formula (116) 
while for the others is the logarithmic model formula (125). The 
difference between the two models is relatively small; therefore, they 
can be considered equivalent. According to the level of 𝑅2 and 𝑃𝑟𝑠
it can be stated that the regression model is moderate significant for 
the present variable.

– Deadweight 𝐷𝑊 𝑇 : the deadweight can be modelled according to for-
mulae (108), (117), and (126). Considering the quality of fit indica-
tors of Table 4, the best model is the power one of formula (117). 
According to the level of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regres-
sion is significant for the present variable.

– Installed power 𝑃𝐵 : the installed power can be modelled according to 
formulae (109), (118), and (127). Considering the quality of fit indi-
cators of Table 4, the best model for 𝑅2 and 𝑀𝐴𝑃𝐸 is the power one 
formula (118) while for the others is the logarithmic model formula 
(127). The difference between the two models is relatively small; 
therefore, they can be considered equivalent. According to the level 
of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression model is not sig-
nificant for the present variable.

– Speed 𝑉𝑠: the vessel speed can be modelled according to formulae 
(110), (119), and (128). Considering the quality of fit indicators of 
Table 4, the best model is the linear one of formula (110). According 
to the level of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regression model 
is not significant for the present variable.

– Number of passengers 𝑁𝑝: the number of passengers can be modelled 
according to formulae (111), (120), and (129). Considering the qual-
ity of fit indicators of Table 4, the best model is the linear one of 
formula (111). According to the level of 𝑅2 and 𝑃𝑟𝑠 it can be stated 
that the regression model is not significant for the present variable.

– Displacement Δ: the displacement can be modelled according to for-
mulae (112), (121), and (130). Considering the quality of fit indica-
tors of Table 4, the best model is the power one of formula (121). 
According to the level of 𝑅2 and 𝑃𝑟𝑠 it can be stated that the regres-
sion model is significant for the present variable.

A.1.4.  Models as a function of 𝐿
Hereafter, a detailed analysis is presented variable by variable for 

the regression models presented in Section 5.1.4:

– Displacement Δ: the displacement can be modelled according to for-
mulae (131), (140), and (149). According to the quality of fit indi-
cators of Table 5, the best regression is the power model of formula 
(140). The level of indicators like 𝑅2 and 𝑃𝑟𝑠 state that the regression 
is significant for the selected variable.

– Breadth 𝐵: the breadth can be modelled according to formulae (132), 
(141), and (150). Taking into consideration the 𝑅2 and 𝑀𝐴𝑃𝐸, the 
best model is the power one of formula (141). The other indicators 
are equivalent for the power and the linear model. Therefore, the 
power model of formula (141 can be considered the best regression 
for 𝐵. The level of 𝑅2 and 𝑃𝑟𝑠 state that the regression is moderate 
significant for the selected variable.

– Depth 𝐷: the depth can be modelled according to formulae (133), 
(142), and (151). For this case, the indicators shown in Table 5 are 
discordant. The 𝑅2, 𝑃𝑟𝑠 and 𝑅𝑀𝑆𝐸 indicate the linear model as the 
best solution, 𝑀𝐴𝑃𝐸 the power model and 𝑅𝑅𝑀𝑆𝐸 the logarithmic 
and the linear. However, the differences are relatively small between 
the three regressions. In any case, according to the level of 𝑅2 and 
𝑃𝑟𝑠, the regressions are not significant for the selected variable.

– Draught 𝑇 : the draught can be modelled according to formulae (134), 
(143), and (152). Taking into consideration the 𝑅2 values, the best 
regression is given by the power model formula (143). The other 
indicators are in favour of the logarithmic model of formula (152). 
Therefore, the best model could be the logarithmic one. The level of 
𝑅2 and 𝑃𝑟𝑠 state that the regression is moderate significant for the 
selected variable.

– Deadweight 𝐷𝑊 𝑇 : the deadweight can be modelled according to for-
mulae (135), (144), and (153). According to the 𝑀𝐴𝑃𝐸, the best 
model is the linear one formula (135). For the other indices the best 
regression is the power model formula (144). Therefore the best re-
gression can be given by the power model. The level of 𝑅2 and 𝑃𝑟𝑠
state that the regression is significant for the selected variable.

– Installed power 𝑃𝐵 : the installed power can be modelled according 
to formulae (136), (145), and (154). The 𝑅2 value is in favor of the 
power regression of formula (136). However, the other indices in 
Table 5 indicate the logarithmic model formula (154) as the best 
solution. In any case, the level of the 𝑅2 and 𝑃𝑟𝑠 state thar the re-
gression is moderate significant for the selected variable.

– Speed 𝑉𝑠: the speed can be modelled according to formulae (137), 
(146), and (155). According to the quality of fit indicators, all the 
models are similar, with a preference for the power model formula 
(146) according to the 𝑅2 and 𝑀𝐴𝑃𝐸 values and for the logarithmic 
model formula (155) according to the other indicators. However, the 
level of 𝑅2 and 𝑃𝑟𝑠 state that the regression is not significant for the 
selected variable.

– Number of passengers 𝑁𝑝: the number of passengers can be modelled 
according to formulae (138), (147), and (156). The quality of fit indi-
cators of Table 5 are in favour of the power model of formula (147), 
except for the 𝑅𝑅𝑀𝑆𝐸, which indicates the logarithmic model for-
mula (156) as the best option. In any case, the level of 𝑅2 and 𝑃𝑟𝑠
state that the regression is not significant for the selected variable.

– Lane metres 𝐿𝑀 : the lane metres can be modelled according to for-
mulae (139), (148), and (157). The values of the quality of fit in-
dicators of Table 5 suggest that the best model is the power one of 
formula (148). The level of 𝑅2 and 𝑃𝑟𝑠 state that the regression is 
significant for the selected variable.

A.2.  Multiple linear regressions models

Here a detailed variable by variable analysis is presented for all the 
regression models obtained by means of multiple linear regression anal-
ysis. Each Subsection reports the cases obtained for each of the tuples 
of independent variables considered in the analysis.

A.2.1.  Regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇
In the following, a detailed analysis of the results presented in Sec-

tion 5.2.1 for each variable is performed:

– Length 𝐿: the length is well captured by the obtained multiple linear 
regression. Indicators like 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are relatively high, being 
all above 0.8. The other indicators are small, confirming the good 
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quality of the obtained regression. Therefore, it can be concluded 
that the regression of 𝐿 as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is moderate well captured by the obtained 
multiple linear regression. Considering the indicators visible in Ta-
ble 6, the 𝑅2, 𝑅2

𝑎𝑑𝑗 and the 𝑃𝑟𝑠 are between 0.5 and 0.8, showing 
an average quality of the regression. Therefore, it can be concluded 
that the regression of 𝐵 as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is moderate 
significant.

– Depth 𝐷: the multiple linear regression does not provide a particu-
larly good representation of the depth. The indicators like 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠 are between 0.1 and 0.5, showing a bad quality of the re-
gression. Therefore, it can be con concluded that the regression of 𝐷
as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is not significant.

– Draught 𝑇 : the draught is well captured by the obtained multiple 
linear regression. The indicators of Table 6 highlights high value for 
𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 (all above 0.7) and small values for the remaining 
ones. Therefore, it can be concluded that the regression of 𝑇  as a 
function of 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is well captured by the obtained 
multiple linear regression. The indicators of Table 6 show high values 
above 0.65 for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 and all the other indicators are 
relatively small. Therefore, the regression of Δ as a function of 𝑉𝑠
and 𝐷𝑊 𝑇  is significant.

– Installed power 𝑃𝐵 : the installed power is well captured by the ob-
tained multiple linear regression. According to the quality of fit in-
dicators in Table 6, the regression is quite good. In fact, 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠 are all above 0.75 and the other indicators are relatively 
low. Therefore, the regression of 𝑃𝐵 as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is 
significant.

– Number of passengers 𝑁𝑝: the number of passenger is not really well 
captured by the obtained multiple linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠 are between 0.25 and 0.6 and the other indicators have quite 
high relative values. Therefore, the regression of 𝑁𝑝 as a function of 
𝑉𝑠 and 𝐷𝑊 𝑇  is slightly significant.

– Lane metres 𝐿𝑀 : the lane metres are well captured by the obtained 
multiple linear regression. The qulity of fit indicators of Table 6 show 
values of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 above 0.8 and the remaining coefficients 
are significantly low. Therefore, the regression of 𝐿𝑀 as a function 
of 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

A.2.2.  Regressions as a function of 𝑉𝑠 and 𝐿𝑀
A detailed analysis for each variable is hereafter reported for the 

regression analysis presented in Section 5.2.2:

– Length 𝐿: the length is well represented by the obtained multiple 
linear regression. The quality of fit indicators of Table 7 highlight 
values of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 all above or close to 0.75. The other 
indicators are relatively low. Therefore, it can be concluded that the 
regression of 𝐿 as a function of 𝑉𝑠 and 𝐿𝑀 is significant.

– Breadth 𝐵: 𝐵 is moderately well represented by the obtained multiple 
linear regression. The indicators in Table 7 show values between 0.45 
and 0.7 for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, while the other indicators remain 
reasonably low. Therefore, it can be concluded that the regression of 
𝐵 as a function of 𝑉𝑠 and 𝐿𝑀 is moderate significant.

– Depth 𝐷: the multiple linear regression does not provide a particu-
larly good representation of the depth. The values of indicators like 
𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 remain low, ranging between 0.15 and 0.5. The re-
maining coefficients have relatively high values compared to other 
regressions. Therefore it can be concluded that the regression of 𝐷
as a function of 𝑉𝑠 and 𝐿𝑀 is not significant.

– Draught 𝑇 : the draugth is well captured by the obtained multiple lin-
ear regression. Considering the values of indicators like 𝑅2, 𝑅2

𝑎𝑑𝑗 and 
𝑃𝑟𝑠 (all above or close to 0.65), the quality of fit is good. Therefore, 
it can be concluded that the regression of 𝑇  as a function of 𝑉𝑠 and 
𝐿𝑀 is significant.

– Displacement Δ: the displacement is quite well captured by the ob-
tained multiple linear regression. The indicators in Table 7 shows 

values for 𝑅2, 𝑅2
𝑎𝑑𝑗 and 𝑃𝑟𝑠 all above or close to 0.58. Other indica-

tors can be considered relatively low compared to other regressions. 
Therefore, it can be concluded that the regression of Δ as a function 
of 𝑉𝑠 and 𝐿𝑀 is moderate significant.

– Installed power 𝑃𝐵 : the installed power is well captured by the ob-
tained multiple linear regression. The values reported for 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠 are all above 0.75, indicating a good quality of fit. Other 
indicators present small values, which is also positive in this sense. 
Therefore, it can be concluded that the regression of 𝑃𝐵 as a function 
of 𝑉𝑠 and 𝐿𝑀 is significant.

– Number of passengers 𝑁𝑝: the number of passenger are not properly 
captured by the obtained multiple linear regressions. The quality of 
fit indicators of Table 7 show values between 0.25 and 0.5 for 𝑅2, 
𝑅2
𝑎𝑑𝑗 and 𝑃𝑟𝑠, while other indicators are relatively high. Therefore, 

it can be concluded that the regression of 𝑁𝑝 as a function of 𝑉𝑠 and 
𝐿𝑀 is slightly significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well represented by the ob-
tained multiple linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 indicators 
are all above 0.85, while the others are low, indicating a good qual-
ity of fit. Therefore, it can be concluded that the regression of 𝐷𝑊 𝑇
as a function of 𝑉𝑠 and 𝑁𝑝 is significant.

A.2.3.  Regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇
The following items reports a detailed analysis of the quality of fit for 

each variable , resulting from the regressions reported in Section 5.2.2:

– Length 𝐿: the length is well represented by the obtained multiple 
linear regression. The quality of fit indicators of Table 8 present high 
values for the 𝑅62, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, all above 0.8, while the remaining 
indicators are low, highlighting the good quality of the regression. 
Therefore, it can be stated that the regression of 𝐿 as a function of 
𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is quite well represented by the obtained mul-
tiple linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are all above 0.8, while 
the remaining indicators are relatively low. Therefore, it can be con-
cluded that the regression of 𝐵 as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is 
significant.

– Depth 𝐷: the depth is not particularly well represented by the ob-
tained multiple linear regression. The indicators reported in Table 8 
shows low values for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, all ranging between 0.14 
and 0.5, while the remaining indicators are relatively high. There-
fore, it can be stated that the regression of 𝐷 as a function of 𝑁𝑝 and 
𝐷𝑊 𝑇  is not significant.

– Draught 𝑇 : the draugth is well represented by the obtained multiple 
linear regression. The quality of fit indicators 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are all 
above 0.8, while the other indicators are relatively low, highlighting 
the good quality of the regression. Therefore, it can be concluded 
that the regression of 𝑇  as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is well represented by the obtained 
multiple linear regression. Table 8 shows how 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 got 
values higher than 0.8, while the other indices are low. Therefore, 
it can be concluded that the regression of Δ as a function of 𝑁𝑝 and 
𝐷𝑊 𝑇  is significant.

– Installed Power 𝑃𝐵 : the installed power is moderately well repre-
sented by the obtained multiple linear regression. The quality of fit 
indicators of Table 8 show that the value of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are 
ranging between 0.4 and 0.7, while the other indicators remain mod-
erately high. Therefore, it can be stated that the regression of 𝑃𝐵 as 
a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is moderate significant.

– Speed 𝑉𝑠: the speed is moderately well represented by the obtained 
multiple linear regressions. 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 have values ranging 
between 0.25 and 0.6, while the remaining indicators are moderately 
high. Therefore, it can be stated that the regression of 𝑉𝑠 as a function 
of 𝑁𝑝 and 𝐷𝑊 𝑇  is moderate significant.

– Lane metres 𝐿𝑀 : the lane metres are well represented by the ob-
tained multiple linear regression. Table 8 reports values above 0.85 
for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, while the remaining indicators are low, 
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highlighting the good quality of the regression. Therefore, it can be 
stated that the regression of 𝐿𝑀 as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is 
significant.

A.2.4.  Regressions as a function of 𝑁𝑝 and 𝐿𝑀
Hereafter, a detailed analysis of the quality of fit for the regressions 

reported in Section 5.2.3, is reported for each variable:
– Length 𝐿: the length is well represented by the obtained multiple 
linear regression. The level of the quality of fit indicators 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠, all above 0.8, highlights a good quality of the regressions. 
At the same time, the low level of the remaining indicators confirm 
this conclusion. Therefore, it can be stated that the regression of 𝐿
as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Breadth 𝐵: the breadth is quite well represented by the obtained mul-
tiple linear regression. The indicators 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are all above 
0.7, while the remaining indicators are relatively low. Therefore, it 
can be concluded that the regression of 𝐵 as a function of 𝑁𝑝 and 
𝐿𝑀 is significant.

– Depth 𝐷: the depth is not well represented by the obtained multiple 
linear regression. The level of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 in Table 9 reveals 
values between 0.15 and 0.5, while the remaining indicators remains 
relatively high, implying a bad quality of fit. Therefore, it can be 
concluded that the regression of 𝐷 as a function of 𝑁𝑝 and 𝐿𝑀 is 
not significant.

– Draugth 𝑇 : the draught is well represented by the obtained multiple 
linear regression. The indicators of Table 9 present value above 0.75 
for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, while the remaining coefficients remains 
relatively low. Therefore, it can be stated that the regression of 𝑇  as 
a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Displacement Δ: the displacement is well represented by the obtained 
multiple linear regression. 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 indicators in Table 9 
have values above 0.75, while the other indicators remains relatively 
low. Therefore, it can be concluded that the regression of Δ as a 
function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Installed power 𝑃𝐵 : the installed power 𝑃𝐵 is moderate well repre-
sented by the obtained multiple linear regression. The quality of fit 
indicators of Table 9 have values ranging from 0.45 to 0.75 for the 
𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, while the remaining coefficients have moderately 
high values. Therefore, it can be stated that the regression of 𝑃𝐵 as 
a function of 𝑁𝑝 and 𝐿𝑀 is moderate significant.

– Speed 𝑉𝑠: the speed is moderately well represented by the obtained 
multiple linear regressions. 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 have values ranging 
between 0.35 and 0.65, while the remaining indicators are moder-
ately high. Therefore, it can be stated that the regression of 𝑉𝑠 as a 
function of 𝑁𝑝 and 𝐿𝑀 is moderate significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well represented by the ob-
tained multiple linear regression. The values of the indicators of Ta-
ble 9 show levels above 0.85 for the 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠, while the 
others remain low, highlighting the quality of the obtained fit. There-
fore, it can be stated that the regression of 𝐷𝑊 𝑇  as a function of 𝑁𝑝
and 𝐿𝑀 is significant.

A.2.5.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇
In the following a detailed analysis of the obtained data for the re-

gressions reported in Section 5.2.5 is performed for each variable:
– Length 𝐿: the length is well represented by the obtained multiple 
linear regression. The level of indicators 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 is always 
above 0.85 while the remaining indicators are low, highlighting the 
good quality of the regression. Therefore, it can be concluded that 
the regression of 𝐿 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is well represented by the obtained multiple 
linear regression. Table 10 shows values of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 above 
0.8 and the remaining indicators are relatively low. Therefore, it can 
be stated that the regression of 𝐵 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇
is significant.

– Depth 𝐷: the depth is not particularly well represented by the ob-
tained multiple linear regression. The level of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 is 
ranging from 0.2 to 0.6, while the remaining coefficients in Table 10 
remains high. Therefore, it can be concluded that the regression of 
𝐷 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is slightly significant.

– Draught 𝑇 : the draught is well captured by the obtained multiple 
linear regression. The indicators in Table 10 have values of 𝑅2, 𝑅2

𝑎𝑑𝑗
and 𝑃𝑟𝑠 is always above 0.85, while the remaining indicators are 
low. Therefore, it can be concluded that the regression of 𝑇  as a 
function of 𝑉 − 𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is well represented by the obtained 
multiple linear regression. The indicators 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are al-
ways above 0.8, while the remaining indicators remains relatively 
low. Therefore, it can be concluded that the regression of Δ as a 
function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Installed power 𝑃𝐵 : the installed power is well represented by the 
obtained multiple linear regression. Table 10 shows values of 𝑅2, 
𝑅2
𝑎𝑑𝑗 and 𝑃𝑟𝑠 always above 0.8, while the remaining coefficients are 

relatively low. Therefore, it can be stated that the regression of 𝑃𝐵
as a function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Lane metres 𝐿𝑀 : the lane metres are well represented by the obtained 
multiple linear regression. The level of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 is always 
above 0.8, while the level of the remaining indicators is relatively 
low. Therefore, it can be concluded that the regression of 𝐿𝑀 as a 
function of 𝑉𝑠, 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

A.2.6.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀
In the following, a detailed analysis of the obtained regressions (pre-

sented in Section 5.2.6) is performed:

– Length 𝐿: the length is well represented by the obtained multiple lin-
ear regression. The indicators of Table 11 highlights the good quality 
of the regression. In fact, 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 have values above 0.85, 
while the remaining indicators have low values. Therefore, it can be 
concluded that the regression of 𝐿 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀
is significant.

– Breadth 𝐵: the breadth is well represented by the obtained multiple 
linear regression. 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are all above 0.8, while the re-
maining indicators are relatively low. Therefore, it can be concluded 
that the regression of 𝐵 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is significant.

– Depth 𝐷: the depth is not properly well represented by the obtained 
multiple linear regression. According to the data in Table 11, the 𝑅2, 
𝑅2
𝑎𝑑𝑗 and 𝑃𝑟𝑠 are ranging between 0.35 and 0.7, while the remaining 

indicators remain relatively high. Therefore, it can be stated that 
the regression of 𝐷 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is moderate 
significant.

– Draught 𝑇 : the draught is well represented by the obtained multiple 
linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 values, visible in Table 11, 
are all above 0.75 and the remaining indicators are relatively low. 
Therefore, it can be stated that the regression of 𝑇  as a function of 
𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is significant.

– Displacement Δ: the displacement is well represented by the obtained 
multiple linear regression. The data in Table 11 highlight that the 
values of 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 are all above 0.8 while remaining indices 
are low. Therefore, it can be concluded that the regression of Δ as a 
function of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is significant.

– Installed power 𝑃𝐵 : the installed power is well represented by the ob-
tained multiple linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 have values 
above 0.8, while other indicators remain low highlighting the good 
quality of the regression. Therefore, it can be concluded that the re-
gression of 𝑃𝐵 as a function of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well represented by the ob-
tained multiple linear regression. The 𝑅2, 𝑅2

𝑎𝑑𝑗 and 𝑃𝑟𝑠 in Table 11 
are all above 0.85, while the remaining indices are all relatively low. 
Therefore, it can be concluded that the regression of 𝐷𝑊 𝑇  as a func-
tion of 𝑉𝑠, 𝑁𝑝 and 𝐿𝑀 is significant.
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A.3.  Forest tree models

Here a detailed variable by variable analysis is presented for all the 
regression models obtained by means of forest tree regression analysis. 
Each Subsection reports the cases obtained for each of the tuples of in-
dependent variables considered in the analysis.

A.3.1.  Regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇
In the following a detailed description of the quality of fit for the 

regressions presented in Section 5.3.1 is presented variable by variable:

– Length 𝐿: the length is well represented by the obtained forest tree. 
Taking a look to the quality of fit indicators of Table 12, it is possible 
to observe that 𝑅2 and 𝑃𝑟𝑠 are above 0.99 and the remaining ones 
are relatively low. This is an indication of an excellent quality of fit. 
Therefore, it can be stated that the forest tree for 𝐿 as a function of 
𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is well represented by the obtained forest tree. 
The 𝑅2 and 𝑃𝑟𝑠 are both above 0.97 and the remaining indicators 
remain low, highlighting the excellent quality of the fit. Therefore it 
can be stated that the forest tree model for 𝐵 as a function of 𝑉𝑠 and 
𝐷𝑊 𝑇  is significant.

– Depth 𝐷: the depth is moderately well represented by the obtained 
forest tree. The 𝑅2 and 𝑃𝑟𝑠 in Table 12 have values ranging from 0.61 
to 0.81 while the other coefficients remain slightly low. Therefore, 
it can be concluded that the forest tree model for 𝐷 as a function of 
𝑉𝑠 an 𝐷𝑊 𝑇  is moderate significant.

– Draugth 𝑇 :the draugth is really well represented by the obtained for-
est tree model. 𝑅2 and 𝑃𝑟𝑠 values are both above 0.9 and the other 
coefficients are significantly low. This is an indicator of an excellent 
quality of fit of the model. Therefore, it can be concluded that the 
forest tree model for 𝑇  as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is really well represented by the 
obtained forest tree model. The 𝑅2 and 𝑃𝑟𝑠 values in Table 12 are 
both above 0.9 and the remaining indicators remain low. Therefore, 
it can be concluded that the forest tree model for Δ as a function of 
𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Installed power 𝑃𝐵 : the installed power is well represented by the ob-
tained forest tree model. The 𝑅2 and 𝑃𝑟𝑠 values are above 0.9 while 
the other indices are relatively low. Therefore, it can be concluded 
that the forest tree model of 𝑃𝐵 as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is 
significant.

– Number of passengers 𝑁𝑝: the number of passengers are well captured 
by the obtained forest tree model. The level of 𝑅2 and 𝑃𝑟𝑠 visible in 
Table 12 is above 0.85 while the remaining indices are relatively 
low. Therefore, it can be stated that the forest tree model of 𝑁𝑝 as a 
function of 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Lane metres 𝐿𝑀 :the lane metres are well represented by the obtained 
forest tree model. The 𝑅2 and 𝑃𝑟𝑠 indices are both above 0.95 while 
the remaining ones are all relatively low. Therefore, it can be stated 
that the forest tree model of 𝐿𝑀 as a function of 𝑉𝑠 and 𝐷𝑊 𝑇  is 
significant.

A.3.2.  Regressions as a function of 𝑉𝑠 and 𝐿𝑀
In the following a detailed analysis of the obtained data, for the re-

gressions obtained in Section 5.3.2 is performed variable by variable:

– Length 𝐿: the length is well represented by the obtained forest tree 
model. The values of 𝑅2 and 𝑃𝑟𝑠 in Table 13 are both above 0.95, 
while the remaining indices are all relatively low. Therefore it can 
be concluded that the forest tree model of 𝐿 as a function of 𝑉𝑠 and 
𝐿𝑀 is significant.

– Breadth 𝐵: the breadth is well represented by the obtained forest tree 
model. The values of 𝑅2 and 𝑃𝑟𝑠 in Table 13 are both above 0.95, 
while the remaining indices are all relatively low. Therefore it can 
be concluded that the forest tree model of 𝐵 as a function of 𝑉𝑠 and 
𝐿𝑀 is significant.

– Depth 𝐷: the depth is moderately well represented by the obtained 
forest tree model. The quality of fit indicators 𝑅2 and 𝑃𝑟𝑠 are ranging 
between 0.7 and 0.8 while the other indices in Table 13 remains 
slightly low. Therefore, it can be stated that the forest tree model of 
𝐷 as a function of 𝑉𝑠 and 𝐿𝑀 is moderate significant.

– Draugth 𝑇 : the draught is well represented by the obtained forest 
tree model. The quality of fit indicators in Table 13 shows values 
for 𝑅2 and 𝑃𝑟𝑠 above 0.95 while the remaining coefficients are low. 
Therefore, it can be concluded that the forest tree model of 𝑇  as a 
function of 𝑉𝑠 and 𝐿𝑀 is significant.

– Displacement Δ: the displacement is well represented by the obtained 
forest tree model. The values of 𝑅2 and 𝑃𝑟𝑠 in Table 13 are both 
above 0.95, while the remaining indices are all relatively low. There-
fore it can be concluded that the forest tree model of Δ as a function 
of 𝑉𝑠 and 𝐿𝑀 is significant.

– Installed power 𝑃𝐵 : the installed power is really well represented by 
the obtained forest tree model. 𝑅2 and 𝑃𝑟𝑠 indicators are both above 
0.95, while the remaining indicators are low, highlighting the ex-
tremely good quality of the regression. Therefore, it can be concluded 
that the model of 𝑃𝐵 as a function of 𝑉𝑠 and 𝐿𝑀 is significant.

– Number of passengers 𝑁𝑝: the number of passengers is well repre-
sented by the obtained forest tree model. The indicators like 𝑅2 and 
𝑃𝑟𝑠 in Table 13 have values above 0.90 while the remaining coef-
ficients are relatively low. Therefore, it can be concluded that the 
forest tree model of 𝑁𝑝 as a function of 𝑉𝑠 and 𝐿𝑀 is significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well captured by the obtained 
forest tree model. The quality of fit indicators of Table 13 have values 
above 0.9 for the 𝑅2 and 𝑃𝑟𝑠 while the remaining coefficients are 
low. Therefore, it can be concluded that the forest tree model of 
𝐷𝑊 𝑇  as a function of 𝑉𝑠 and 𝐿𝑀 is significant.

A.3.3.  Regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇
In the following a detailed analysis of the obtained data in Sec-

tion 5.3.3 is performed variable by variable:

– Length 𝐿: the length is really well represented by the obtained forest 
tree model. The indicators 𝑅2 and 𝑃𝑟𝑠 are both above 0.95, while the 
others are low, highlighting the excellent quality of the fitted model. 
Therefore, it can be concluded that the forest tree model of 𝐿 as a 
function of 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is well represented by the obtained forest 
tree model. The 𝑅2 and 𝑃𝑟𝑠 coefficients in Table 14 are both above 
0.95, while the remaining ones are relatively low. Therefore, it can 
be stated that the forest tree model of 𝐵 as a function of 𝑁𝑝 and 
𝐷𝑊 𝑇  is significant.

– Depth 𝐷: the depth is not well represented by the obtained forest tree 
model. The 𝑅2 and 𝑃𝑟𝑠 indicators are ranging from 0.2 to 0.5 while 
the other coefficients are relatively high. Therefore, it can be stated 
that the forest tree model of 𝐷 as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is not 
particularly significant.

– Draugth 𝑇 : the draught is well represented by the obtained forest 
tree model. The level of 𝑅2 and 𝑃𝑟𝑠 is above 0.9 while the remaining 
indices remain relatively low. Therefore, it can be concluded that the 
forest tree model of 𝑇  as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is really well represented by the 
obtained forest tree model. The indicators 𝑅2 and 𝑃𝑟𝑠 are both above 
0.95, while the others are low, highlighting the excellent quality of 
the fitted model. Therefore, it can be concluded that the forest tree 
model of Δ as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

– Installed power 𝑃𝐵 : the installed power is quite well represented by 
the obtained forest tree model. The level of the 𝑅2 and 𝑃𝑟𝑠 reported 
in Table 14 is ranging between 0.70 and 0.88, while the remain-
ing indices are moderately low. Therefore, it can be stated that the 
forest tree model of 𝑃𝐵 as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is moderate 
significant.

– Speed 𝑉𝑠: the speed is well represented by the obtained forest tree 
model. The 𝑅2 and 𝑃𝑟𝑠 indices are above 0.70 while the remain-

Ocean Engineering 333 (2025) 121407 

34 



Mauro and Salem

ing ones are relatively low. Therefore, it can be concluded that the 
forest tree model of 𝑉𝑠 as a function of 𝑁𝑝 and 𝐷𝑊 𝑇  is moderate 
significant.

– Lane metres 𝐿𝑀 : the lane metres is well represented by the obtained 
forest tree model. The indicators 𝑅2 and 𝑃𝑟𝑠 are both 0.95, while 
the others are low, highlighting the good quality of the fitted model. 
Therefore, it can be concluded that the forest tree model of 𝐿𝑀 as a 
function of 𝑁𝑝 and 𝐷𝑊 𝑇  is significant.

A.3.4.  Regressions as a function of 𝑁𝑝 and 𝐿𝑀
Hereafter, a detailed analysis variable by variable for the results pre-

sented in Section 5.3.4 is presented:

– Length 𝐿: the length is well represented by the obtained forest tree 
model. The 𝑅2 and the 𝑃𝑟𝑠 in Table 15 are above 0.95, while the 
remaining indicators are low. Therefore, it can be stated that the 
forest tree model of 𝐿 as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Breadth 𝐵: the breadth is well represented by the obtained forest 
tree model. The 𝑅2 and the 𝑃𝑟𝑠 in Table 15 are above 0.95, while 
the remaining indicators are low. Therefore, it can be stated that the 
forest tree model of 𝐿 as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Depth 𝐷: the depth is not well represented by the obtained forest tree 
model. The 𝑅2 and 𝑃𝑟𝑠 are ranging from 0.1 and 0.45, while the 
remaining indices are relatively high. Therefore it can be concluded 
that the forest tree model of 𝐷 as a function of 𝑁𝑝 and 𝐿𝑀 is not 
significant.

– Draught 𝑇 : the draught is well represented by the obtained forest 
tree model. The 𝑅2 and 𝑃𝑟𝑠 in Table 15 are above 0.90, while the 
remaining coefficients are low. Therefore, it can be concluded that 
the forest tree model for 𝑇  as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Displacement Δ: the displacement is well represented by the obtained 
forest tree model. The 𝑅2 and the 𝑃𝑟𝑠 in Table 15 are above 0.95, 
while the remaining indicators are low. Therefore, it can be stated 
that the forest tree model of Δ as a function of 𝑁𝑝 and 𝐿𝑀 is signif-
icant.

– Installed power 𝑃𝐵 : the installed power is well represented by the 
obtained forest tree model. The 𝑅2 and the 𝑃𝑟𝑠 in Table 15 are above 
0.95, while the remaining indicators are low. Therefore, it can be 
stated that the forest tree model of 𝑃𝐵 as a function of 𝑁𝑝 and 𝐿𝑀
is significant.

– Speed 𝑉𝑠: the speed is well represented by the obtained forest tree 
model. The 𝑅2 and 𝑃𝑟𝑠 indices are both above 0.8 and the remaining 
coefficients are relatively low. Therefore, it can be concluded that the 
forest tree model of 𝑉𝑠 as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well represented by the ob-
tained forest tree model. The indicators of Table 15 show values 
above 0.95 for the 𝑃𝑟𝑠 and 𝑅2, while the remaining indices are rel-
atively low. Therefore, it can be stated that the forest tree model of 
𝐷𝑊 𝑇  as a function of 𝑁𝑝 and 𝐿𝑀 is significant.

A.3.5.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇
Hereafter, a detailed analysis variable by variable for the regressions 

presented in Section 5.3.5 is presented:

– Length 𝐿: the length is really well represented by the obtained forest 
tree model. The indicators in Table 16 highlight values above 0.95 
for 𝑅2 and 𝑃𝑟𝑠 and extremely low values for the remaining indica-
tors. Therefore, it can be concluded that the forest tree model of 𝐿
as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Breadth 𝐵: the breadth is really well represented by the obtained 
forest tree model. The indicators in Table 16 highlight values above 
0.95 for 𝑅2 and 𝑃𝑟𝑠 and extremely low values for the remaining 
indicators. Therefore, it can be concluded that the forest tree model 
of 𝐵 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Depth 𝐷: the depth is quite well captured by the obtained forest tree 
model. The 𝑅2 and 𝑃𝑟𝑠 values are ranging from 0.65 to 0.9 while 

the other indices are moderately low. Therefore, it can be concluded 
that the forest tree model of 𝐷 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is 
moderate significant.

– Draugth 𝑇 : the draugth is really well represented by the obtained 
forest tree model. The indicators in Table 16 highlight values above 
0.95 for 𝑅2 and 𝑃𝑟𝑠 and extremely low values for the remaining 
indicators. Therefore, it can be concluded that the forest tree model 
of 𝑇  as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Displacement Δ: the displacement is really well represented by the 
obtained forest tree model. The indicators in Table 16 highlight val-
ues above 0.95 for 𝑅2 and 𝑃𝑟𝑠 and extremely low values for the 
remaining indicators. Therefore, it can be concluded that the forest 
tree model of Δ as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

– Installed power 𝑃𝐵 : the installed power is well represented by the 
obtained forest tree model. The 𝑅2 and 𝑃𝑟𝑠 coefficients are above 
0.9 while the remaining indices are relatively low. Therefore, it can 
be stated that the forest tree model of 𝑃𝐵 as a function of 𝑁𝑝, 𝑉𝑠 and 
𝐷𝑊 𝑇  is significant.

– Lane metres 𝐿𝑀 : the lane metres is really well represented by the 
obtained forest tree model. The indicators in Table 16 highlight val-
ues above 0.95 for 𝑅2 and 𝑃𝑟𝑠 and extremely low values for the 
remaining indicators. Therefore, it can be concluded that the forest 
tree model of 𝐿𝑀 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇  is significant.

A.3.6.  Regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀
In the following, a detailed analysis variable by variable for the re-

gression models presented in Section 5.3.6 is presented:

– Length 𝐿: the length is really well represented by the obtained forest 
tree model. The 𝑅2 and 𝑃𝑟𝑠 shown in Table 17 are both above 0.95 
and the other indices are extremely low, highlighting the excellent 
quality of the fitting model. Therefore, it can be concluded that the 
forest tree model of 𝐿 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 is significant.

– Breadth 𝐵: the breadth is really well represented by the obtained for-
est tree model. The 𝑅2 and 𝑃𝑟𝑠 shown in Table 17 are both above 
0.95 and the other indices are extremely low, highlighting the ex-
cellent quality of the fitting model. Therefore, it can be concluded 
that the forest tree model of 𝐵 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 is 
significant.

– Depth 𝐷: the depth is not well represented by the obtained forest tree 
model. The level of 𝑅2 and 𝑃𝑟𝑠 is ranging from 0.2 and 0.5, while the 
remaining indices are relatively high. Therefore, it can be concluded 
that the forest tree model of 𝐷 as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 is not 
significant.

– Draught 𝑇 : the draught is well represented by the obtained forest 
tree model. 𝑅2 and 𝑃𝑟𝑠 indicators are both above 0.90, while the 
remaining coefficients remain low. Therefore, it can be concluded 
that the forest tree model of 𝑇  as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 is 
significant.

– Displacement Δ: the displacement is really well represented by the 
obtained forest tree model. The 𝑅2 and 𝑃𝑟𝑠 shown in Table 17 are 
both above 0.95 and the other indices are extremely low, highlight-
ing the excellent quality of the fitting model. Therefore, it can be 
concluded that the forest tree model of Δ as a function of 𝑁𝑝, 𝑉𝑠 and 
𝐿𝑀 is significant.

– Installed power 𝑃𝐵 : the installed power is really well represented by 
the obtained forest tree model. The 𝑅2 and 𝑃𝑟𝑠 shown in Table 17 
are both above 0.95 and the other indices are extremely low, high-
lighting the excellent quality of the fitting model. Therefore, it can 
be concluded that the forest tree model of 𝑃𝐵 as a function of 𝑁𝑝, 𝑉𝑠
and 𝐿𝑀 is significant.

– Deadweight 𝐷𝑊 𝑇 : the deadweight is well represented by the ob-
tained forest tree model. 𝑅2 and 𝑃𝑟𝑠 indicators are both above 0.90, 
while the remaining coefficients remain low. Therefore, it can be 
concluded that the forest tree model of 𝐷𝑊 𝑇  as a function of 𝑁𝑝, 𝑉𝑠
and 𝐿𝑀 is significant.
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Appendix B.  Multiple linear regression coefficients and 
additional analyses

For each of the multiple linear regressions reported in Section 5 a de-
tailed and extended analysis has been conducted. First of all, the multi-
collinearity has been checked according to the Variance Inflation Factor 
(𝑉 𝐼𝐹 ), highlighting no collinearities for all the analysed models. Such a 
result is due to the fact that the independent variables have been chosen 
taking into consideration the correlation between variables. In any case, 
Table B.1 reports the obtained values for the 𝑉 𝐼𝐹  factor. In the Table, 
the models refer to the nomenclature introduced in Section 6.

Table B.1 
𝑉 𝐼𝐹  values for the different multiple linear regression models.
 model 𝑉𝑠 𝑁𝑝 𝐷𝑊 𝑇 𝐿𝑀  multicol.
 mdl-0  1.0188  –  1.10188  –  NO
 mdl-1  1.0005  –  –  1.0005  NO
 mdl-2  –  1.0030  1.0030  –  NO
 mdl-3  –  1.0353  –  1.0353  NO
 mdl-4  1.5360  1.5121  1.0459  –  NO
 mdl-5  1.5100  1.5626  –  1.0614  NO

Table B.2 
Breush-Pagan test results for the detection of heteroscedasticity.
 model 𝑇 𝑑𝑓 𝑝-val  Heterosced.  model 𝑇 𝑑𝑓 𝑝-val  Heterosced.
 mlr-0-L  5.3828  2  0.0678  NO  mlr-1-L  12.3467  2  0.0021  YES
 mlr-0-B  10.1615  2  0.0062  YES  mlr-1-B  14.0700  2  0.0009  YES
 mlr-0-D  5.8500  2  0.0537  NO  mlr-1-D  6.9571  3  0.0733  NO
 mlr-0-T  1.9761  2  0.3723  NO  mlr-1-T  9.1288  3  0.0276  YES
 mlr-0-Δ  3.3457  3  0.3413  NO  mlr-1-Δ  2.7254  2  0.2560  NO
 mlr-0-𝑃𝐵  2.3386  3  0.5052  NO  mlr-1-𝑃𝐵  1.1446  2  0.5642  NO
 mlr-0-𝑁𝑝  6.5104  2  0.0386  YES  mlr-1-𝑁𝑝  6.0687  2  0.0481  YES
 mlr-0-LM  10.6443  1  0.0011  YES  mlr-1-𝐷𝑊 𝑇  7.9892  2  0.0184  YES
 mlr-2-L  7.9495  3  0.0471  YES  mlr-3-L  2.4105  2  0.2996  NO
 mlr-2-B  4.6506  3  0.1992  NO  mlr-3-B  0.7457  2  0.6888  NO
 mlr-2-D  0.4600  2  0.7945  NO  mlr-3-D  3.7538  3  0.2893  NO
 mlr-2-T  2.4983  2  0.2868  NO  mlr-3-T  0.0012  1  0.9729  NO
 mlr-2-Δ  1.6753  2  0.4327  NO  mlr-3-Δ  15.8208  2  0.0004  YES
 mlr-2-𝑃𝐵  8.1633  2  0.0169  YES  mlr-3-𝑃𝐵  8.3643  2  0.0153  YES
 mlr-2-𝑉𝑠  3.3598  3  0.3394  NO  mlr-3-𝑉𝑠  19.6624  2  0.0001  YES
 mlr-2-LM  5.1130  3  0.1637  NO  mlr-3-DWT  25.2297  3  0.0000  YES
 mlr-4-L  11.6644  3  0.0086  YES  mlr-5-L  5.8250  2  0.0543  NO
 mlr-4-B  0.6842  2  0.7103  NO  mlr-5-B  7.0013  2  0.0302  YES
 mlr-4-D  0.3254  2  0.8499  NO  mlr-5-D  0.6558  2  0.7205  NO
 mlr-4-T  5.9039  2  0.0522  NO  mlr-5-T  0.9564  2  0.6199  NO
 mlr-4-Δ  2.8179  2  0.2444  NO  mlr-5-Δ  15.4236  2  0.0004  YES
 mlr-4-𝑃𝐵  0.4309  3  0.9338  NO  mlr-5-𝑃𝐵  12.7546  2  0.0017  YES
 mlr-4-LM  0.1100  3  0.9906  NO  mlr-5-DWT  15.0734  2  0.0005  YES

For all the regressions, the normality of the residuals has been 
checked with the Kolmogorov-Smirnov test, giving positive results for 
all tested cases. Furthermore, the heteroscedasticity has been evaluated 
according to the Breush-Pagan test, reporting the results in Table B.2. 
According to the Breush-Pagan test, 19 models out of 46 are affected by 
moderate heteroscedasticity. In fact, the low values of the 𝑇 -values of 
the test suggest that the heteroscedasticity is low and essentially due to 
the nature of the database data, as no collinearity is detected between 
the independent variables. In any case, being the objective of the regres-
sions the estimation of the independent variable and not the influence 
of each parameter on the final regression, the detection of non-constant 
variance does not require the manipulation of input data to eliminate 
the problem.

Finally, to ensure the reproducibility of the study, this appendix re-
ports all the coefficients obtained during the regression analysis. The 
data reports the estimated coefficients together with the associated SE, 
t-Stud and p-value. The data associated to the model mlr-0 are reported 
in Table B.3. Table B.4 reports the data of model mlr-1, while Tables B.5 
and B.6 report the data of models mlr-2 and mlr-3, respectively. Due to 
the high number of regression coefficients, the data for model mlr-4 are 
split into Tables B.7 and B.8. The same for mlr-5, where the data are 
reported in Tables B.9 and B.10.
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Table B.3 
Multiple linear regression coefficients for the regressions as a function of 𝑉𝑠 and 𝐷𝑊 𝑇 .
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  – −8187.3022  2070.5570 −3.9541  0.00016  –  20.8351  2.1508  9.6868  2.76706e-15 
 𝐷𝑊 𝑇  1.1680  0.3076  3.7966  0.00028 𝐷𝑊 𝑇  0.0018  0.0003  4.7626  8.01129e-06 
 𝑉𝑠  1074.8750  270.7609  3.9698  0.00015 𝑉𝑠 −0.1468  0.0823 −1.7825  0.07831  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.1498  0.0400 −3.7461  0.00033 𝐷𝑊 𝑇 2 −6.6138e-08  2.7762e-08 −2.3822  0.01949  
 𝑉 2

𝑠 −46.1891  11.7038 −3.9464  0.00017
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠  0.0064  0.0017  3.7337  0.00035
 𝑉 3

𝑠  0.6583  0.1672  3.9366  0.00017
 𝐷𝑊 𝑇 ⋅ 𝑉 3

𝑠 −9.1310e-05  2.4481e-05 −3.7297  0.00035
   Depth 𝐷  Draught 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −366.2691  181.3983 −2.0191  0.04686  – −162.1063  51.8850 −3.1243  0.00251  
 𝐷𝑊 𝑇  0.0270  0.0100  2.7028  0.00841 𝐷𝑊 𝑇  0.0249  0.0078  3.1895  0.00206  
 𝑉𝑠  45.2096  22.7064  1.9910  0.04993 𝑉𝑠  21.9180  6.7816  3.2319  0.00181  
 𝐷𝑊 𝑇 2 −2.0861e-06  7.9773e-07 −2.6151  0.01068 𝐷𝑊 𝑇 2 −1.6589e-07  6.2569e-08 −2.6513  0.00972  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.0011  0.0004 −2.6741  0.00910 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.0031  0.0010 −3.1416  0.00238  
 𝑉 2

𝑠 −1.9025  0.9467 −2.0096  0.04788 𝑉 2
𝑠 −0.9598  0.2940 −3.2640  0.00163  

 𝐷𝑊 𝑇 2 ⋅ 𝑉𝑠  9.0448e-08  3.4825e-08  2.5971  0.01120 𝐷𝑊 𝑇 2 ⋅ 𝑉𝑠  6.2478e-09  2.7360e-09  2.2835  0.02510  
 𝑉 3

𝑠  0.0282  0.0131  2.1569  0.03401 𝐷𝑊 𝑇 ⋅ 𝑉 2
𝑠  0.0001  4.3038e-05  3.1769  0.00214  

 𝑉 3
𝑠  0.0139  0.0042  3.3044  0.00144  

 𝐷𝑊 𝑇 ⋅ 𝑉 3
𝑠 −1.9921e-06  6.1579e-07 −3.2351  0.00179  

   Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  4575.8903  1189.9755  3.8453  0.00023  – −4609516.8483  2250123.2920 −2.0485  0.04382  
 𝐷𝑊 𝑇  2.2089  0.1633  13.5203  6.83835e-23 𝐷𝑊 𝑇  61.0966  25.9324  2.3559  0.02095  
 𝑉𝑠  773528.1942  379709.4560  2.0371  0.04498  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −5.0310  2.2264 −2.2596  0.02659  
 𝑉 2

𝑠 −48679.5602  23836.7177 −2.0422  0.04446  
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠  0.1049  0.0477  2.1993  0.03077  
 𝑉 3

𝑠  1362.3990  659.8316  2.0647  0.04222  
 𝑉 4

𝑠 −14.2491  6.7995 −2.0955  0.03932  
   Number of passengers 𝑁𝑝  Lane metres 𝐿𝑀
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −568697.7025  191361.7437 −2.9718  0.00393 −  38176.9107  18769.3119  2.0340  0.04522  
 𝐷𝑊 𝑇  3.2185  1.4448  2.2275  0.02879 𝐷𝑊 𝑇  0.1980  0.0766  2.5831  0.01158  
 𝑉𝑠  93973.9812  32296.6494  2.9097  0.00471 𝑉𝑠 −4924.7857  2380.1122 −2.0691  0.04172  
 𝐷𝑊 𝑇 2 −0.0002  0.0001 −2.1017  0.03879 𝐷𝑊 𝑇 2  1.4229e-05  5.4699e-06  2.6013  0.01103  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.1402  0.0629 −2.2279  0.02876 𝑉 2

𝑠  210.7398  99.4720  2.1185  0.03718  
 𝑉 2

𝑠 −5791.2841  2028.6099 −2.8548  0.00551 𝑉 3
𝑠 −2.9784  1.3712 −2.1720  0.03277  

 𝐷𝑊 𝑇 2 ⋅ 𝑉𝑠  1.0553e-05  5.0523e-06  2.0887  0.03999
 𝑉 3

𝑠  157.4439  56.1648  2.8032  0.00638
 𝑉 4

𝑠 −1.5851  0.5778 −2.7430  0.00754
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Table B.4 
Multiple linear regression coefficients for the regressions as a function of 𝑉𝑠 and 𝐿𝑀 .
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  – −1775.2835  591.2607 −3.0025  0.00357 −  20.0413  1.0843  18.4825  2.43531e-31 
 𝑉𝑠  229.9712  75.1271  3.0610  0.00300 𝐿𝑀  0.0037  0.0008  4.4103  3.03870e-05 
 𝐿𝑀  0.0799  0.0227  3.5190  0.00071 𝐿𝑀2 −3.2205e-07  1.5312e-07 −2.1031  0.03844  
 𝑉 2

𝑠 −9.4565  3.1472 −3.0047  0.00354
 𝑉𝑠 ⋅ 𝐿𝑀 −0.0017  0.0009 −1.8744  0.06452
 𝐿𝑀2 −3.5418e-06  9.0372e-07 −3.9191  0.00018
 𝑉 3

𝑠  0.1313  0.0433  3.0276  0.00331
   Depth 𝐷  Draugth 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −638.7960  202.4972 −3.1545  0.00228 − −26.1857  13.7411 −1.9056  0.06028  
 𝑉𝑠  75.9464  24.1109  3.1498  0.00231 𝑉𝑠  3.7748  1.7385  2.1712  0.03287  
 𝐿𝑀  0.1301  0.0410  3.1739  0.00215 𝐿𝑀  0.0018  0.0002  6.6242  3.70326e-09 
 𝑉 2

𝑠 −2.8764  0.9508 −3.0250  0.00336 𝑉 2
𝑠 −0.1552  0.0726 −2.1377  0.03559  

 𝑉𝑠 ⋅ 𝐿𝑀 −0.0109  0.0034 −3.1329  0.00243 𝐿𝑀2 −5.7143e-07  1.1940e-07 −4.7855  7.67725e-06 
 𝐿𝑀2 −2.3350e-06  1.4451e-06 −1.6157  0.11018 𝑉 3

𝑠  0.0021  0.0010  2.1446  0.03501  
 𝑉 3

𝑠  0.0350  0.0124  2.8096  0.00626 𝐿𝑀3  5.3853e-11  1.4361e-11  3.7497  0.00033  
 𝑉 2

𝑠 ⋅ 𝐿𝑀  0.0002  7.5160e-05  3.1452  0.00234
 𝐿𝑀3  3.6553e-10  1.7478e-10  2.0913  0.03975
   Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −413093.9495  179638.5352 −2.2995  0.02401 −  383892.1292  356943.3338  1.0754  0.28550  
 𝑉𝑠  54087.1509  22763.5942  2.3760  0.01983 𝑉𝑠 −36682.5534  31156.2655 −1.1773  0.24267  
 𝐿𝑀  4.6392  0.4570  10.1506  3.76407e-16 𝐿𝑀 −443.5873  363.2971 −1.2210  0.22580  
 𝑉 2

𝑠 −2292.3352  951.3230 −2.4096  0.01820 𝑉 2
𝑠  886.3373  676.1951  1.3107  0.19383  

 𝑉 3
𝑠  32.1251  13.1157  2.4493  0.01644 𝑉𝑠 ⋅ 𝐿𝑀  40.6619  31.4130  1.2944  0.19938  

 𝐿𝑀2  0.1486  0.0859  1.7300  0.08763  
 𝑉 2

𝑠 ⋅ 𝐿𝑀 −0.8910  0.6746 −1.3207  0.19048  
 𝑉𝑠 ⋅ 𝐿𝑀2 −0.0134  0.0074 −1.8094  0.07429  
 𝐿𝑀3  7.9426e-07  3.3737e-07  2.3542  0.02111  
 𝑉 2

𝑠 ⋅ 𝐿𝑀2  0.0002  0.0001  1.8245  0.07194  
   Number of passengers 𝑁𝑝  Deadweight 𝐷𝑊 𝑇

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −69616.1503  29945.0969 −2.3247  0.02261 − −139176.4782  39713.2823 −3.5045  0.00074  
 𝑉𝑠  8174.6295  3585.9891  2.2796  0.02529 𝑉𝑠  17899.8479  5029.4182  3.5590  0.00062  
 𝐿𝑀  10.5791  5.7847  1.8287  0.07115 𝐿𝑀  3.3838  0.3337  10.1374  4.56379e-16 
 𝑉 2

𝑠 −310.0921  142.2733 −2.1795  0.03223 𝑉 2
𝑠 −755.4373  210.1498 −3.5947  0.00055  

 𝑉𝑠 ⋅ 𝐿𝑀 −0.9051  0.4957 −1.8255  0.07164 𝐿𝑀2 −0.0002  6.0235e-05 −4.0923  0.00010  
 𝑉 3

𝑠  3.8743  1.8759  2.0652  0.04213 𝑉 3
𝑠  10.5151  2.8967  3.6299  0.00049  

 𝑉 2
𝑠 ⋅ 𝐿𝑀  0.0190  0.0106  1.7974  0.07603
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Table B.5 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝 and 𝐷𝑊 𝑇 .
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  –  0.0000  0.0000  NaN  NaN −  0.0000  0.0000  NaN  NaN  
 𝐷𝑊 𝑇  0.0424  0.0062  6.8097  2.106419e-09 𝐷𝑊 𝑇  0.0051  0.0009  5.3408  9.30877e-07 
 𝑁𝑝  0.1990  0.0362  5.4888  5.26883e-07 𝑁𝑝  0.0521  0.0066  7.7975  2.68494e-11 
 𝐷𝑊 𝑇 2 −3.4211e-06  1.0728e-06 −3.1887  0.00208 𝐷𝑊 𝑇 2 −5.3362e-07  1.7201e-07 −3.1022  0.00269  
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −4.0627e-05  9.2934e-06 −4.3716  3.91306e-05 𝐷𝑊 𝑇 ⋅𝑁𝑝 −3.2475e-06  9.2674e-07 −3.5042  0.00077  
 𝑁2

𝑝 −0.0001  3.7074e-05 −3.7605  0.00033 𝑁2
𝑝 −5.7167e-05  8.5640e-06 −6.6752  3.56893e-09 

 𝐷𝑊 𝑇 3  1.1761e-10  4.8908e-11  2.4047  0.01865 𝐷𝑊 𝑇 3  2.5160e-11  8.3141e-12  3.0261  0.00337  
 𝐷𝑊 𝑇 2 ⋅𝑁𝑝  1.8098e-09  1.0272e-09  1.7617  0.08218 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  2.98745e-09  7.7290e-10  3.8651  0.00023  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  2.7581e-08  5.4869e-09  5.0267  3.29609e-06 𝑁3
𝑝  2.2834e-08  4.2005e-09  5.4360  6.34874e-07 

 𝑁3
𝑝  2.3525e-08  1.0623e-08  2.2144  0.02983 𝐷𝑊 𝑇 ⋅𝑁3

𝑝 −7.2679e-13  1.8456e-13 −3.9379  0.00018  
 𝐷𝑊 𝑇 2 ⋅𝑁2

𝑝 −9.8614e-13  4.4465e-13 −2.2177  0.02959 𝑁4
𝑝 −2.8715e-12  6.9591e-13 −4.1262  9.34870e-05 

 𝐷𝑊 𝑇 ⋅𝑁3
𝑝 −3.4986e-12  1.5295e-12 −2.2874  0.02499

   Depth 𝐷  Draught 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  0.0000  0.0000  NaN  NaN −  0.0000  0.0000  NaN  NaN  
 𝐷𝑊 𝑇  0.0013  0.0028  0.4564  0.64936 𝐷𝑊 𝑇  0.0014  0.0001  10.7230  8.53826e-17 
 𝑁𝑝  0.0240  0.0106  2.2576  0.02687 𝑁𝑝  0.0096  0.0009  10.2542  6.37546e-16 
 𝐷𝑊 𝑇 2  4.2867e-07  6.24681e-07  0.6862  0.49468 𝐷𝑊 𝑇 2 −1.4349e-07  2.3292e-08 −6.1606  3.31321e-08 
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −4.7399e-06  3.8997e-06 −1.2154  0.22800 𝐷𝑊 𝑇 ⋅𝑁𝑝 −7.8412e-07  1.1635e-07 −6.7388  2.8544e-09  
 𝑁2

𝑝 −1.2198e-05  8.6696e-06 −1.4069  0.16356 𝑁2
𝑝 −8.2708e-06  1.1657e-06 −7.0946  6.16840e-10 

 𝐷𝑊 𝑇 3 −4.1042e-11  3.4456e-11 −1.1911  0.23734 𝐷𝑊 𝑇 3  6.1491e-12  1.0511e-12  5.8500  1.20612e-07 
 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −6.1674e-10  7.4076e-10 −0.8325  0.40773 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −1.0964e-11  6.1662e-12 −1.7781  0.07943  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  5.8693e-09  2.0313e-09  2.8894  0.00504 𝐷𝑊 𝑇 ⋅𝑁2
𝑝  6.2342e-10  1.1040e-10  5.6465  2.7791e-07  

 𝑁3
𝑝 −2.2370e-09  1.1756e-09 −1.9029  0.06088 𝑁3

𝑝  2.5596e-09  5.3450e-10  4.7887  8.24918e-06 
 𝐷𝑊 𝑇 3 ⋅𝑁𝑝  7.2299e-14  4.2100e-14  1.7173  0.09004 𝐷𝑊 𝑇 ⋅𝑁3

𝑝 −1.1684e-13  2.5210e-14 −4.6346  1.4778e-05  
 𝐷𝑊 𝑇 2 ⋅𝑁2

𝑝 −3.5422e-13  1.3807e-13 −2.56536  0.01230 𝑁4
𝑝 −2.5755e-13  8.7335e-14 −2.9490  0.00424  

   Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  0.0000  0.0000  NaN  NaN −  1935.3044  14327.4967  0.1350  0.89289  
 𝐷𝑊 𝑇  2.5607  1.1650  2.1979  0.03099 𝐷𝑊 𝑇  19.6098  6.1037  3.2127  0.00190  
 𝑁𝑝  22.3941  7.9726  2.8088  0.00631 𝑁𝑝 −46.7003  21.4432 −2.1778  0.03240  
 𝐷𝑊 𝑇 2 −9.5414e-05  0.0001 −0.9409  0.34972 𝐷𝑊 𝑇 2 −0.0030  0.0010 −2.9217  0.00453  
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −0.0029  0.0024 −1.2100  0.23002 𝐷𝑊 𝑇 ⋅𝑁𝑝  0.0017  0.0009  1.9285  0.05737  
 𝑁2

𝑝 −0.0290  0.0123 −2.3577  0.02095 𝑁2
𝑝  0.0349  0.01469  2.3808  0.01967  

 𝐷𝑊 𝑇 2 ⋅𝑁𝑝  3.5180e-07  1.9729e-07  1.7831  0.07855 𝐷𝑊 𝑇 3  1.32212e-07  5.0178e-08  2.6348  0.01012  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  1.8048e-06  1.2324e-06  1.4645  0.14717 𝑁3
𝑝 −7.4734e-06  3.0567e-06 −2.4448  0.01671  

 𝑁3
𝑝  1.3768e-05  6.60487e-06  2.0845  0.04043

 𝐷𝑊 𝑇 2 ⋅𝑁2
𝑝 −1.7979e-10  9.0843e-11 −1.9792  0.05141

 𝑁4
𝑝 −2.3335e-09  1.0450e-09 −2.2330  0.0284

   Speed 𝑉𝑠  Lane metres 𝐿𝑀
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  16.9947  4.1067  4.1382  8.67985e-05 −  0.0000  0.0000  NaN  NaN  
 𝐷𝑊 𝑇  0.0001  0.0011  0.1338  0.89385 𝐷𝑊 𝑇  0.3309  0.3725  0.8882  0.37728  
 𝑁𝑝  0.0098  0.0052  1.8681  0.06544 𝑁𝑝 −0.7783  1.8601 −0.4184  0.67682  
 𝐷𝑊 𝑇 2  5.2775e-08  7.8738e-08  0.6702  0.50464 𝐷𝑊 𝑇 2  4.3521e-05  7.2359e-05  0.6014  0.54936  
 𝐷𝑊 𝑇 ⋅𝑁𝑝  1.3210e-08  1.1041e-06  0.0119  0.9904 𝐷𝑊 𝑇 ⋅𝑁𝑝  0.0002  0.0003  0.7714  0.44291  
 𝑁2

𝑝 −4.6552e-06  1.8985e-06 −2.4519  0.01641 𝑁2
𝑝  0.0009  0.0023  0.4019  0.68890  

 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −1.2528e-10  7.1655e-11 −1.7483  0.08428 𝐷𝑊 𝑇 3 −2.7498e-09  3.5299e-09 −0.7790  0.43846  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  6.0345e-10  2.6765e-10  2.2545  0.02693 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −1.7182e-07  8.3713e-08 −2.0525  0.04365  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝  4.4389e-07  2.2515e-07  1.9715  0.05239  
 𝑁3

𝑝 −1.2255e-06  9.8973e-07 −1.2383  0.21951  
 𝐷𝑊 𝑇 3 ⋅𝑁𝑝  9.9231e-12  4.23459e-12  2.3433  0.02179  
 𝐷𝑊 𝑇 ⋅𝑁3

𝑝 −9.2669e-11  4.7878e-11 −1.9354  0.05674  
 𝑁4

𝑝  2.9524e-10  1.5725e-10  1.8774  0.06439  
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Table B.6 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝 and 𝐿𝑀 .
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  –  0.0000  0.0000  NaN  NaN −  0.0000  0.0000  NaN  NaN  
 𝑁𝑝  0.2251  0.0358  6.28822  1.86056e-08 𝑁𝑝  0.0542  0.0063  8.5936  8.8362e-13  
 𝐿𝑀  0.0760  0.0133  5.6887  2.26940e-07 𝐿𝑀  0.0143  0.0038  3.7183  0.00038  
 𝑁2

𝑝 −0.0002  5.4344e-05 −3.7428  0.00035 𝑁2
𝑝 −6.1150e-05  7.8581e-06 −7.7817  3.1017e-11  

 𝑁𝑝 ⋅ 𝐿𝑀 −4.8990e-05  2.2307e-05 −2.1961  0.03112 𝑁𝑝 ⋅ 𝐿𝑀 −4.9095e-06  2.6198e-06 −1.8740  0.06482  
 𝐿𝑀2 −9.7964e-06  2.9638e-06 −3.3053  0.00144 𝐿𝑀2 −6.6978e-06  3.1589e-06 −2.1203  0.03728  
 𝑁3

𝑝  8.6450e-08  2.6856e-08  3.2190  0.00189 𝑁3
𝑝  2.6565e-08  3.7495e-09  7.0851  6.42731e-10 

 𝑁2
𝑝 ⋅ 𝐿𝑀  1.9584e-08  9.8592e-09  1.9863  0.05059 𝑁2

𝑝 ⋅ 𝐿𝑀  4.7603e-09  2.1993e-09  2.1644  0.03361  
 𝑁𝑝 ⋅ 𝐿𝑀2  1.1503e-08  5.0394e-09  2.2826  0.02524 𝐿𝑀3  1.6518e-09  8.4213e-10  1.9615  0.05352  
 𝑁4

𝑝 −1.3499e-11  4.2937e-12 −3.1439  0.00237 𝑁4
𝑝 −3.7341e-12  6.1862e-13 −6.0362  5.5733e-08  

 𝑁2
𝑝 ⋅ 𝐿𝑀2 −5.5845e-12  2.2400e-12 −2.4929  0.01484 𝑁3

𝑝 ⋅ 𝐿𝑀 −1.2779e-12  5.3256e-13 −2.3996  0.01889  
 𝐿𝑀4 −1.4013e-13  7.3902e-14 −1.8961  0.06178  
   Depth 𝐷  Draught 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  12.2166  3.1744  3.8484  0.00023 −  0.0000  0.0000  NaN  NaN  
 𝑁𝑝 −0.0117  0.0076 −1.5462  0.12590 𝑁𝑝  0.0091  0.0008  10.8096  4.9888e-17  
 𝐿𝑀  0.0009  0.0004  2.3481  0.02127 𝐿𝑀  0.0049  0.0005  8.6883  5.2792e-13  
 𝑁2

𝑝  1.0968e-05  5.3886e-06  2.0354  0.04503 𝑁2
𝑝 −8.2293e-06  1.1345e-06 −7.2532  2.91741e-10 

 𝑁3
𝑝 −2.3866e-09  1.1233e-09 −2.1246  0.0366 𝑁𝑝 ⋅ 𝐿𝑀 −9.3302e-07  1.5549e-07 −6.0001  6.2484e-08  

 𝐿𝑀2 −2.1754e-06  4.4594e-07 −4.8783  5.7463e-06  
 𝑁2

𝑝  3.2886e-09  5.7113e-10  5.7580  1.70660e-07 
 𝑁2

𝑝 ⋅ 𝐿𝑀  3.0364e-10  5.7819e-11  5.2515  1.3299e-06  
 𝐿𝑀3  4.4360e-10  1.1964e-10  3.7077  0.00039  
 𝑁4

𝑝 −4.8149e-13  9.3713e-14 −5.1379  2.0868e-06  
 𝐿𝑀4 −3.1300e-14  1.0547e-14 −2.9675  0.00401  
   Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  4091.2998  3607.8021  1.1340  0.26017 −  3557.8698  20515.3812  0.1734  0.86277  
 𝑁𝑝 −6.8466  5.1563 −1.3278  0.18801 𝑁𝑝 −20.9432  31.0536 −0.6744  0.50206  
 𝐿𝑀  6.0016  1.6956  3.5393  0.00067 𝐿𝑀  33.0620  15.4903  2.1343  0.03599  
 𝑁2

𝑝  0.0051  0.0017  2.8715  0.00522 𝑁2
𝑝  0.0252  0.0164  1.5363  0.12855  

 𝑁𝑝 ⋅ 𝐿𝑀  0.0046  0.0020  2.2405  0.0278 𝑁𝑝 ⋅ 𝐿𝑀  0.0016  0.0128  0.1264  0.89973  
 𝐿𝑀2 −0.0004  0.0002 −2.2643  0.02625 𝐿𝑀2 −0.0130  0.0042 −3.0711  0.00294  
 𝑁2

𝑝 ⋅ 𝐿𝑀 −2.2974e-06  7.6880e-07 −2.9882  0.00372 𝑁3
𝑝 −7.8614e-06  3.0120e-06 −2.6099  0.01087  

 𝑁2
𝑝 ⋅ 𝐿𝑀  4.9180e-06  2.8294e-06  1.7381  0.08618  

 𝑁𝑝 ⋅ 𝐿𝑀2 −2.9521e-06  1.7009e-06 −1.7355  0.08664  
 𝐿𝑀3  1.8380e-06  4.7334e-07  3.8832  0.00021  
   Speed 𝑉𝑠  Deadweight 𝐷𝑊 𝑇

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  8.2886  3.3555  2.4701  0.01566 − −1859.7805  840.9318 −2.2115  0.02981  
 𝑁𝑝  0.0164  0.0042  3.8905  0.0002 𝑁𝑝  2.4291  0.7818  3.1069  0.00260  
 𝐿𝑀  0.0113  0.0026  4.2190  6.49104e-05 𝐿𝑀  4.1475  0.4265  9.7229  2.97319e-15 
 𝑁2

𝑝 −4.9160e-06  1.4856e-06 −3.3089  0.00141 𝑁2
𝑝 −0.0003  0.0002 −1.9568  0.05381  

 𝑁𝑝 ⋅ 𝐿𝑀 −6.0296e-06  1.7473e-06 −3.4508  0.00090 𝑁𝑝 ⋅ 𝐿𝑀 −0.0003  0.0001 −2.2050  0.03028  
 𝐿𝑀2 −3.3602e-06  9.2730e-07 −3.6236  0.00051 𝐿𝑀2 −0.0002  6.0612e-05 −4.7259  9.51622e-06 
 𝑁2

𝑝 ⋅ 𝐿𝑀  2.0769e-09  6.4429e-10  3.2235  0.00184
 𝐿𝑀3  3.8757e-10  1.1381e-10  3.4052  0.00104
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Table B.7 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 . (Part I).
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  – −1248.0528  583.9765 −2.1371  0.03603 −  0.0000  0.0000  NaN  NaN  
 𝐷𝑊 𝑇  0.2317  0.0998  2.3201  0.02321 𝐷𝑊 𝑇  0.1335  0.0372  3.5876  0.00064  
 𝑉𝑠  112.7001  53.4170  2.1098  0.03840 𝑁𝑝 −0.4889  0.1818 −2.6887  0.00913  
 𝑁𝑝  1.0508  0.5128  2.0489  0.04416 𝐷𝑊 𝑇 2 −1.0009e-05  3.0700e-06 −3.2602  0.00178  
 𝐷𝑊 𝑇 2  5.6750e-07  3.2921e-07  1.7238  0.08909 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.0136  0.0037 −3.6242  0.00057  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.0195  0.0090  2.1629  0.03391 𝑉 2

𝑠 −0.2429  0.1827 −1.3295  0.18840  
 𝑉 2

𝑠 −2.2346  1.2230 −1.8270  0.07188 𝐷𝑊 𝑇 ⋅𝑁𝑝  4.1664e-05  1.1454e-05  3.6374  0.00055  
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −0.0001  8.3226e-05 −1.8243  0.07230 𝑉𝑠 ⋅𝑁𝑝  0.0628  0.0226  2.7776  0.00717  
 𝑉𝑠 ⋅𝑁𝑝 −0.0909  0.0415 −2.1891  0.03187 𝑁2

𝑝 −0.0001  4.5336e-05 −2.2734  0.02636  
 𝑁2

𝑝  2.4602e-05  1.0616e-05  2.3173  0.02337 𝐷𝑊 𝑇 3  1.7460e-1  8.6782e-12  2.0120  0.04842  
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠  0.0004  0.0002  1.9811  0.05144 𝐷𝑊 𝑇 2 ⋅ 𝑉𝑠  1.0217e-06  3.1237e-07  3.2708  0.00172  
 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −6.5618e-10  3.2186e-10 −2.0387  0.04520 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠  0.0003  9.3392e-05  3.6989  0.00045  
 𝐷𝑊 𝑇 ⋅𝑁𝑃 ⋅ 𝑉𝑠  1.3879e-05  6.7397e-06  2.0592  0.04313 𝑉 3

𝑠  0.0371  0.0162  2.2929  0.02514  
 𝑉 2

𝑠 ⋅𝑁𝑝  0.0018  0.0008  2.1137  0.03804 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −3.1157e-09  8.8509e-10 −3.5201  0.00080  
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝 −3.0026e-09  1.6170e-09 −1.8569  0.06746 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁𝑝 −1.7488e-06  4.8972e-07 −3.5710  0.00068  
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠 ⋅𝑁𝑝 −2.8373e-07  1.3870e-07 −2.0455  0.04450 𝑉 2
𝑠 ⋅𝑁𝑝 −0.0028  0.0010 −2.8616  0.00568  

 𝑉𝑠 ⋅𝑁2
𝑝  8.4363e-06  3.6426e-06  2.3159  0.02377  

 𝐷𝑊 𝑇 2 ⋅ 𝑉 2
𝑠 −2.6081e-08  7.6868e-09 −3.3930  0.00119  

 𝑉 4
𝑠 −0.0010  0.0003 −2.9208  0.00481  

 𝐷𝑊 𝑇 2 ⋅ 𝑉𝑠 ⋅𝑁𝑝  1.3187e-10  3.7910e-11  3.4786  0.00091  
 𝑉 3

𝑠 ⋅𝑁𝑝  4.5440e-05  1.5377e-05  2.9549  0.00437  
 𝑉 2

𝑠 ⋅𝑁2
𝑝 −1.6896e-07  7.22182e-08 −2.3396  0.02243  

   Depth 𝐷  Draugth 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   –  177.5708  145.7283  1.2185  0.22690 −  57.3342  23.0144  2.4912  0.01503  
 𝐷𝑊 𝑇 −0.0315  0.0244 −1.2902  0.20099 𝐷𝑊 𝑇  0.0081  0.0026  3.1262  0.00255  
 𝑉𝑠 −19.0405  14.3180 −1.3298  0.18765 𝑉𝑠 −8.7213  3.0248 −2.8832  0.00518  
 𝑁𝑝  0.1592  0.0718  2.2168  0.02970 𝑁𝑝 −0.0344  0.0211 −1.6327  0.10688  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠  0.0037  0.0023  1.5513  0.12507 𝐷𝑊 𝑇 2 −1.9770e-08  3.0964e-09 −6.3850  1.47247e-08 
 𝑉 2

𝑠  0.5121  0.3475  1.4733  0.14488 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −0.0006  0.0002 −2.7449  0.00763  
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −1.4833e-05  5.6984e-06 −2.6030  0.01115 𝑉 2

𝑠  0.4407  0.1345  3.2755  0.00162  
 𝑉𝑠 ⋅𝑁𝑝 −0.0118  0.0052 −2.2558  0.02703 𝐷𝑊 𝑇 ⋅𝑁𝑝 −1.1122e-05  2.4857e-06 −4.4744  2.80507e-05 
 𝑁2

𝑝  2.2784e-05  8.1423e-06  2.7982  0.00654 𝑉𝑠 ⋅𝑁𝑝  0.0070  0.0027  2.5773  0.01200  
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠 −0.0001  5.8356e-05 −1.7508  0.08411 𝐷𝑊 𝑇 ⋅ 𝑉 2
𝑠  1.2681e-05  4.9782e-06  2.5473  0.01299  

 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁𝑝  6.5332e-07  2.4660e-07  2.6493  0.00985 𝑉 3
𝑠 −0.0070  0.0020 −3.4776  0.00086  

 𝑉 2
𝑠 ⋅𝑁𝑝  0.0002  0.0001  2.0959  0.03950 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁𝑝  8.8337e-07  2.0135e-07  4.3871  3.85525e-05 

 𝑉𝑠 ⋅𝑁2
𝑝 −9.5588e-07  3.3296e-07 −2.8708  0.00533 𝑉 2

𝑠 ⋅𝑁𝑝 −0.0003  0.0001 −3.2533  0.00173  
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠 ⋅𝑁𝑝 −1.7427e-08  4.0468e-09 −4.3063  5.15886e-05 
 𝑉 3

𝑠 ⋅𝑁𝑝  6.6089e-06  1.78400e-06  3.7044  0.00041  
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Table B.8 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐷𝑊 𝑇 . (Part II).
     Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  –  0.0000  0.0000  NaN  NaN − −510999.3849  348439.1089 −1.4665  0.14679 
 𝐷𝑊 𝑇  107.5351  39.5673  2.7177  0.00835 𝐷𝑊 𝑇  125.7389  58.5647  2.1470  0.03511 
 𝑉𝑠 −17646.7134  7681.4392 −2.2973  0.02473 𝑉𝑠  36970.7252  31854.1045  1.1606  0.24957 
 𝑁𝑝 −267.5379  211.6793 −1.2638  0.21065 𝑁𝑝  807.7937  317.5934  2.5434  0.01309 
 𝐷𝑊 𝑇 2  0.0002  8.2464e-05  3.2638  0.00173 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −9.5374  5.2753 −1.8079  0.0747  
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 −9.7659  3.6770 −2.6559  0.00987 𝑉 2

𝑠 −567.5217  726.5743 −0.7810  0.43727 
 𝑉 2

𝑠  1652.0369  710.8934  2.3238  0.02317 𝐷𝑊 𝑇 ⋅𝑁𝑝 −0.1495  0.0511 −2.9206  0.00464 
 𝐷𝑊 𝑇 ⋅𝑁𝑝 −0.0902  0.0338 −2.6688  0.00953 𝑉𝑠 ⋅𝑁𝑝 −66.5726  25.9318 −2.5672  0.01230 
 𝑉𝑠 ⋅𝑁𝑝  46.2768  26.6628  1.7356  0.08722 𝑁2

𝑝  0.0269  0.0093  2.8756  0.00528 
 𝑁2

𝑝  0.0599  0.0300  1.9974  0.04983 𝐷𝑊 𝑇 ⋅ 𝑉 2
𝑠  0.1756  0.1192  1.4733  0.14495 

 𝐷𝑊 𝑇 ⋅ 𝑉 2
𝑠  0.2172  0.0852  2.5473  0.01315 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁𝑝  0.0118  0.0041  2.8645  0.00544 

 𝑉 3
𝑠 −37.0994  16.5859 −2.2368  0.02863 𝑉 2

𝑠 ⋅𝑁𝑝  1.2828  0.5209  2.4624  0.01615 
 𝐷𝑊 𝑇 2 ⋅𝑁𝑝 −1.9174e-07  8.1025e-08 −2.3664  0.02085 𝑁3

𝑝 −5.4266e-06  1.9894e-06 −2.7276  0.00798 
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁𝑝  0.0087  0.0030  2.8550  0.00572 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠 ⋅𝑁𝑝 −0.0002  8.3388e-05 −2.7536  0.00743 
 𝑉 2

𝑠 ⋅𝑁𝑝 −2.7212  1.2374 −2.1990  0.03133
 𝐷𝑊 𝑇 ⋅𝑁2

𝑝 −9.2105e-06  4.7822e-06 −1.9259  0.05835
 𝑉𝑠 ⋅𝑁2

𝑝 −0.0025  0.0012 −1.9391  0.05669
 𝐷𝑊 𝑇 ⋅ 𝑉 2

𝑠 ⋅𝑁𝑝 −0.0002  7.1995e-05 −2.8367  0.00602
 𝑉 3

𝑠 ⋅𝑁𝑝  0.0517  0.0208  2.4843  0.01548
 𝐷𝑊 𝑇 ⋅ 𝑉𝑠 ⋅𝑁2

𝑝  3.9997e-07  2.0622e-07  1.9395  0.05664
   Lane metres 𝐿𝑀  
  Variable  Coefficient  SE  t-Stud  p-value  
  –  467.4116  259.9962  1.7977  0.07585
 𝐷𝑊 𝑇  0.1748  0.0748  2.3343  0.02199
 𝑁𝑝 −0.1781  0.0701 −2.5391  0.01297
 𝐷𝑊 𝑇 2  1.5065e-05  5.2970e-06  2.8441  0.00560

Table B.9 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 . (Part I).
     Length 𝐿  Breadth 𝐵
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  – −999.4391  427.7201 −2.3366  0.02220 −  0.0000  0.0000  NaN  NaN  
 𝑉𝑠  129.2679  53.5539  2.4137  0.01829 𝑉𝑠  2.6609  1.1470  2.3198  0.02335  
 𝑁𝑝  0.1163  0.0409  2.8409  0.00582 𝑁𝑝  0.0004  0.0184  0.0258  0.97941  
 𝐿𝑀  0.0965  0.0310  3.1045  0.0027 𝐿𝑀  0.0300  0.0265  1.1348  0.26042  
 𝑉 2

𝑠 −5.2761  2.2230 −2.3734  0.02025 𝑉 2
𝑠 −0.0786  0.0505 −1.5548  0.12462  

 𝑉𝑠 ⋅𝑁𝑝 −0.0083  0.0019 −4.3303  4.66899e-05 𝑉𝑠 ⋅𝑁𝑝 −0.0003  0.0007 −0.4038  0.68757  
 𝑁2

𝑝  3.21996e-05  6.2111e-06  5.1841  1.86343e-06 𝑁2
𝑝  4.0984e-06  1.1323e-06  3.6194  0.00056  

 𝑉𝑠 ⋅ 𝐿𝑀 −0.0038  0.0015 −2.5423  0.01313 𝑉𝑠 ⋅ 𝐿𝑀 −0.0054  0.0022 −2.4546  0.01666  
 𝑁𝑝 ⋅ 𝐿𝑀 −1.0997e-05  2.0364e-05 −0.5400  0.5908 𝑁𝑝 ⋅ 𝐿𝑀  2.1301e-05  1.6236e-05  1.3119  0.19393  
 𝐿𝑀2  6.0210e-07  2.1617e-06  0.2785  0.78139 𝐿𝑀2  8.9754e-06  1.4309e-05  0.6272  0.53260  
 𝑉 3

𝑠  0.0785  0.0305  2.5701  0.01220 𝑉 2
𝑠 ⋅ 𝐿𝑀  0.0001  6.4145e-05  2.9085  0.00490  

 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀  2.6275e-06  9.2797e-07  2.8314  0.00598 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀 −7.6179e-07  6.9242e-07 −1.1001  0.27512  
 𝑁2

𝑝 ⋅ 𝐿𝑀 −1.4983e-08  2.8829e-09 −5.1973  1.76993e-06 𝑁2
𝑝 ⋅ 𝐿𝑀 −1.6162e-09  5.4390e-10 −2.9714  0.00409  

 𝑁𝑝 ⋅ 𝐿𝑀2 −3.9113e-09  1.7848e-09 −2.1914  0.03160 𝑉𝑠 ⋅ 𝐿𝑀2  8.3866e-07  1.0342e-06  0.8108  0.42026  
 𝑁𝑃 ⋅ 𝐿𝑀2 −7.0312e-09  3.6379e-09 −1.9327  0.05743  
 𝐿𝑀3 −5.2223e-09  2.1581e-09 −2.4197  0.01820  
 𝑉 2

𝑠 ⋅ 𝐿𝑀2 −5.5853e-08  2.5863e-08 −2.1595  0.03433  
 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀2  3.0513e-10  1.5745e-10  1.9379  0.05678  
 𝑉𝑠 ⋅ 𝐿𝑀3  2.3332e-10  9.5224e-11  2.4502  0.01685  
   Depth 𝐷  Draugth 𝑇
  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
   – −74.0202  56.5452 −1.3090  0.19462 −  17.6184  7.7752  2.2659  0.02641  
 𝑉𝑠  4.5163  4.6181  0.9779  0.33132 𝑉𝑠 −1.4558  0.7637 −1.9061  0.06056  
 𝑁𝑝  0.1323  0.0471  2.8090  0.00637 𝑁𝑝  0.0059  0.0020  2.8693  0.00537  
 𝐿𝑀  0.0401  0.0123  3.2590  0.00169 𝐿𝑀 −0.0052  0.0040 −1.2914  0.20060  
 𝑉 2

𝑠 −0.0299  0.0952 −0.3140  0.75438 𝑉 2
𝑠  0.0362  0.0186  1.9465  0.05543  

 𝑉𝑠 ⋅𝑁𝑝 −0.0098  0.0037 −2.6353  0.01025 𝑉𝑠 ⋅𝑁𝑝 −0.0001  8.6028e-05 −2.1628  0.03382  
 𝑁2

𝑝  1.4399e-05  5.2151e-06  2.7610  0.00728 𝑁2
𝑝 −7.2915e-07  3.8381e-07 −1.8997  0.06141  

 𝑉𝑠 ⋅ 𝐿𝑀 −0.0015  0.0005 −3.0372  0.00331 𝑉𝑠 ⋅ 𝐿𝑀  0.0007  0.0003  1.7932  0.07707  
 𝑁𝑝 ⋅ 𝐿𝑀 −2.6425e-05  7.0337e-06 −3.7569  0.00034 𝑁𝑝 ⋅ 𝐿𝑀 −2.1139e-06  9.9060e-07 −2.1340  0.03619  
 𝐿𝑀2 −2.5089e-06  1.3142e-06 −1.9090  0.06018 𝐿𝑀2 −5.3399e-07  9.8554e-08 −5.4182  7.38737e-07 
 𝑉 2

𝑠 ⋅𝑁𝑝  0.0001  7.2835e-05  2.0088  0.04825 𝑁3
𝑝  1.6564e-10  8.0143e-11  2.0668  0.04229  

 𝑁3
𝑝 −3.1535e-09  1.0929e-09 −2.8853  0.00513 𝑉 2

𝑠 ⋅ 𝐿𝑀 −1.6956e-05  9.6655e-06 −1.7543  0.08357  
 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀  1.1468e-06  3.0142e-07  3.8049  0.00029 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀  8.2974e-08  4.3110e-08  1.9246  0.05816  
 𝐿𝑀3  3.6621e-10  1.5793e-10  2.3186  0.02321 𝐿𝑀3  4.7570e-11  1.1864e-11  4.0093  0.00014  
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Table B.10 
Multiple linear regression coefficients for the regressions as a function of 𝑁𝑝, 𝑉𝑠 and 𝐿𝑀 . (Part II).
     Displacement Δ  Installed power 𝑃𝐵

  Variable  Coefficient  SE  t-Stud  p-value  Variable  Coefficient  SE  t-Stud  p-value  
  –  35954.3946  24737.9753  1.4534  0.1502 −  0.0000  0.0000  NaN  NaN  
 𝑉𝑠 −5111.7692  1874.8323 −2.7265  0.00796 𝑉𝑠  5551.8294  4522.5810  1.2275  0.22377 
 𝑁𝑝  43.6079  11.3252  3.8504  0.00024 𝑁𝑝 −75.2072  74.4374 −1.0103  0.31586 
 𝐿𝑀  20.7648  8.6139  2.4106  0.01837 𝐿𝑀 −228.7228  87.0084 −2.6287  0.01055 
 𝑉 2

𝑠  164.1776  39.1412  4.1944  7.41500e-05 𝑉 2
𝑠 −184.6708  197.8458 −0.9334  0.35386 

 𝑉𝑠 ⋅𝑁𝑝 −2.3184  0.5165 −4.4882  2.55006e-05 𝑉𝑠 ⋅𝑁𝑝  1.3980  3.1813  0.4394  0.66172 
 𝑁2

𝑝  0.0068  0.0016  4.1092  0.00010 𝑁2
𝑝  0.0270  0.0085  3.1823  0.00219 

 𝑉𝑠 ⋅ 𝐿𝑀 −0.6782  0.3921 −1.7296  0.0878 𝑉𝑠 ⋅ 𝐿𝑀  6.3486  3.6855  1.7225  0.08944 
 𝑁𝑝 ⋅ 𝐿𝑀 −0.0085  0.0052 −1.6101  0.1115 𝑁𝑝 ⋅ 𝐿𝑀  0.0682  0.0628  1.0858  0.28130 
 𝐿𝑀2 −0.0003  0.0001 −1.8839  0.06344 𝐿𝑀2  0.1834  0.0524  3.5011  0.00081 
 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀  0.0005  0.0002  2.3610  0.02082 𝑁3

𝑝 −5.5655e-06  1.7758e-06 −3.1339  0.00253 
 𝑁2

𝑝 ⋅ 𝐿𝑀 −2.5469e-06  7.5462e-07 −3.3750  0.00117 𝑉 2
𝑠 ⋅ 𝐿𝑀  0.1867  0.1053  1.7732  0.08059 

 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀 −0.0026  0.0026 −0.9815  0.32973 
 𝑉𝑠 ⋅ 𝐿𝑀2 −0.0083  0.0023 −3.5980  0.00059 
 𝑁𝑝 ⋅ 𝐿𝑀2 −2.1248e-05  1.2374e-05 −1.7171  0.09043 
 𝐿𝑀3 −2.5623e-05  8.1597e-06 −3.1402  0.00248 
 𝑉𝑠 ⋅𝑁𝑝 ⋅ 𝐿𝑀2  8.7889e-07  5.2465e-07  1.6751  0.09842 
 𝑉𝑠 ⋅ 𝐿𝑀3  1.1742e-06  3.6185e-07  3.2451  0.00181 
   Deadweight 𝐷𝑊 𝑇  
  Variable  Coefficient  SE  t-Stud  p-value  
  – −118296.1464  39443.1036 −2.9991  0.00367
 𝑉𝑠  14773.2463  4973.0715  2.9706  0.00399
 𝑁𝑝 −0.5592  1.6751 −0.3338  0.73943
 𝐿𝑀  14.6333  5.7554  2.5425  0.01306
 𝑉 2

𝑠 −622.3221  207.3525 −3.0012  0.00364
 𝑁2

𝑝  0.0006  0.0005  1.1252  0.26408
 𝑉𝑠 ⋅ 𝐿𝑀 −0.4904  0.2580 −1.9008  0.06116
 𝑁𝑝 ⋅ 𝐿𝑀  0.0009  0.0007  1.3673  0.17559
 𝐿𝑀2 −0.0034  0.0015 −2.3305  0.02246
 𝑉 3

𝑠  8.8478  2.8612  3.0922  0.00278
 𝑁2

𝑝 ⋅ 𝐿𝑀 −5.1310e-07  2.6285e-07 −1.9520  0.05466
 𝑉𝑠 ⋅ 𝐿𝑀2  0.0001  6.5781e-05  2.1417  0.03545
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