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We analyze two coupled quantum oscillators in a common Lorentzian environment and control
them by detuning (temporarily shifting) their frequencies. The reduced dynamics are solved exactly,
without Born or Markov approximations, by propagating each detuning segment in closed form. We
study two control schedules: regular detuning, with perfectly periodic on and off pulses of fixed
period, width, and amplitude; and irregular detuning, with the same on/off structure but cycle-
to-cycle jitter in period, width, and/or amplitude. Our main observable is the average excitation
number (AEN) of each mode. Detuning moves the system away from the bath’s spectral peak,
suppressing decoherence and damping non-Markovian revivals; in effectively Markovian baths the
benefit is small. We quantify performance with a simple time-domain suppression factor. Larger
detuning amplitudes and higher duty cycles yield stronger protection. Irregular control is slightly
weaker at low duty cycle but becomes comparable to regular control as the duty cycle approaches
one. These results give practical design rules linking detuning, duty cycle, and bath width, and
provide an exact benchmark for controlled non-Markovian dynamics.

I. INTRODUCTION

Open quantum systems are fundamental in many
areas of physics, including quantum optics, condensed
matter, and quantum information science [1–4]. In
realistic models, the system of interest interacts with
its surrounding environment, typically described as
having infinitely many degrees of freedom. The reduced
dynamics of the system are then found by tracing out the
environment’s degrees of freedom [2, 4–6].

To make this problem tractable, most standard
approaches rely on two major approximations: the
Born approximation, which assumes weak system–
environment coupling and that the environment remains
effectively unchanged by the system dynamics [2, 7,
8], and the Markov approximation, which neglects
any memory effects in the bath [2, 9, 10]. These
approximations lead to widely used frameworks such
as the Lindblad-Markovian master equation and the
Redfield equation [11, 12], which remain foundational
tools in quantum optics [13], condensed matter
physics [14], and quantum information science [5].

However, these approximations break down when the
system is strongly coupled to its environment, when the
environment retains significant memory, or when the
bath’s spectral features and initial correlations cannot
be neglected. In such non-Markovian regimes [15, 16],
the environment can feed back information or energy
to the system, resulting in revivals, backflow, and more
complex dynamics that go beyond the reach of simple
Markovian models. Exact solutions that fully capture
non-Markovian effects are rare but provide critical insight
into the true behavior of realistic open quantum systems.

Recently, a notable contribution by Wang et al. [17]
demonstrated how an exactly solvable open quantum
system can reveal both Markovian and non-
Markovian dynamics without relying on these standard

approximations. Specifically, they derived an exact
analytical solution for the dynamics of a single bosonic
oscillator coupled to a Lorentzian reservoir, showing
clearly how finite bath memory produces relaxation,
energy revivals, and backflow that simple Markovian
models fail to capture.

In parallel, Wu et al. studied two non-interacting
harmonic oscillators coupled simultaneously to a common
environment, introducing a tunable parameter that
interpolates between local and collective decoherence.
Working in the Heisenberg picture, they obtained exact
operator dynamics and characterized conditions under
which steady-state quantum coherence (SSQC) appears
or is suppressed in the partial collective, non-Markovian
regime [18]. Their analysis emphasizes how the balance
of collective vs. individual decoherence controls long-time
behavior and clarifies when non-Markovianity does not
by itself guarantee SSQC.

Here we analyze a minimal yet richer model: two
directly interacting bosonic oscillators that are both
coupled to a common Lorentzian reservoir. We solve the
controlled dynamics in closed form by propagating each
detuning segment exactly and use the average excitation
numbers as the primary figures of merit (see Fig. 1). This
framework naturally describes platforms such as coupled
optical cavities [13, 19] and superconducting circuits with
a shared element [20], and it captures two pathways for
energy exchange: direct mode–mode coupling through a
coherent Hamiltonian interaction and indirect exchange
mediated by the shared bath [21].

The exact solution of the system’s dynamics allows us
to detect non-Markovian memory effects and quantify
how the environment governs energy transfer between
the modes. In our parameter regimes, strong revivals
and significant energy exchange can arise from the
reservoir’s finite memory and correlation time. In this
sense, the bath acts as both a sink and a dominant
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channel for indirect backflow, making it possible to
diagnose non-Markovian behavior beyond the direct
link. Throughout, inter-mode coherence is used only
as a diagnostic of bath-mediated correlations; we do
not target entanglement generation, and none of our
conclusions relies on coherence as a primary figure of
merit [22, 23].

Importantly, our approach naturally respects
probability conservation and ensures that all energy and
coherence transfer within the system–bath setup is fully
accounted for by the exact solution itself. Because the
entire environment is explicitly included in the model,
any energy that leaves one oscillator enters the shared
reservoir and can later flow back, depending on the
bath’s memory. This means that the physical processes
which would appear as an explicit “driving term” in
approximate treatments are already fully described
by the system’s internal dynamics and the reservoir’s
finite correlations. In other words, there is no need to
introduce or solve a separate inhomogeneous source term:
the environment here is not an external classical driver
but an integral part of the total quantum system, which
evolves unitarily when the system and bath are treated
together. When the reservoir is traced out to obtain
the reduced system dynamics, any backflow, revival,
or induced coherence appears naturally through the
exact time evolution. This guarantees that our solution
remains fully self-consistent: the total probability and
energy are conserved at all times, no information is
artificially lost or injected, and all indirect environment-
mediated effects emerge directly from the finite memory
of the bath. Unlike approximate Markovian models,
which add dissipative or driving terms by hand, this
exact approach preserves the complete dynamical
structure and provides a rigorous way to detect when
and how the reservoir’s memory generates observable
non-Markovian effects (with coherence treated as a
secondary observable) between initially uncorrelated,
coupled quantum modes.

Using an exact model with no approximations, we
ask a simple question: when do detuning pulses reduce
decoherence in structured baths?

In this work we adopt a detuning-based, leakage-
elimination-operator (LEO)-inspired dynamical
decoupling (DD) scheme: rapid, coherent frequency
shifts lift the system off resonance with the bath’s
spectral peak and thereby reduce system–bath
exchange [24, 25]. In the filter-function view, such
frequency modulation acts as a spectral filter: by
choosing the detuning magnitude and pulse timing, one
suppresses noise where the bath carries weight [26, 27].
In short, for a memoryless (Markovian) bath there is
little to recover and modulation helps only weakly; for
a long-memory (non-Markovian) bath, good timing and
sufficient detuning can strongly block information and
energy from flowing back.
DD originated in NMR (spin echoes, CPMG) and
was formalized for quantum systems as bang-bang

decoupling [24, 25]. Many sequences have since been
developed, including concatenated DD (robustness via
hierarchy) [28] and Uhrig DD (spectrally targeted
with optimized timing for certain baths) [29].
The effectiveness of DD has been demonstrated
across platforms—trapped ions [30], NV centers in
diamond [31], and superconducting qubits [32]—and is
now a standard primitive in quantum control.
Real devices, however, seldom realize perfectly
periodic control. To model realistic imperfections,
randomized/irregular DD perturbs pulse widths, periods,
and detuning amplitudes from cycle to cycle [33–36].
Such irregularity can average out coherent error buildup
and increase robustness, but may also reduce peak
suppression if the duty cycle is low. We therefore study
both regular DD (fixed period/width/detuning) and
irregular DD with ±20% jitter in all three parameters,
following the nonperturbative framework of Ref. [36]. In
our construction, DD enters as a fast, piecewise detuning
of the oscillator frequencies—formally equivalent to a
LEO-type frequency-modulation control—so that each
ON/OFF segment is propagated exactly within the same
homogeneous solution, and segments are matched by
continuity of the amplitudes and their time derivatives
(no phenomenology added). The timing parameters
(τ, δ, η, ωD) used throughout are illustrated in Fig. 2.
In the non-Markovian regime (long bath memory), high-
duty-cycle DD—each control cycle of period τ with an
ON window of duration δ (duty cycle η ≡ δ/τ) and
detuning amplitude ωD (the instantaneous frequency
shift during the ON window; see Fig. 2)—strongly
suppresses heating and damps revivals by pushing the
system off resonance with the bath’s Lorentzian peak at
Ω and disrupting temporal correlations. By contrast,
in the Markovian regime (short memory), DD yields
little improvement: energy transferred to the reservoir is
irreversibly dispersed and frequency modulation cannot
recover it. These trends agree with the filter-function
picture [26, 27] and prior non-Markovian analyses [36].
We quantify the impact of control with a single
time-domain suppression factor that compares the
average excitation number (AEN) under control to the
corresponding no-control trajectory. In our setting,
growth of the AEN is a proxy for heating and
coherence loss; thus, larger suppression indicates stronger
mitigation of decoherence. Values close to one signify
strong suppression, values near zero indicate little or no
improvement, and negative values indicate degradation.
For concise summaries we also report a window-averaged
suppression factor over a fixed time interval.

II. MODEL AND EXACT MATHEMATICAL
FRAMEWORK

We study a minimal but nontrivial open system of
two directly interacting bosonic modes that also share
a common thermal reservoir. This extends exact single-
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FIG. 1: Schematic of the model: two bosonic oscillators with
direct coupling, both interacting with a common thermal bath.
The shared reservoir mediates additional indirect interactions and
induces non-Markovian memory effects. In our analysis,
dynamical decoupling (DD) is implemented as fast detuning of
the mode frequencies to move the system off resonance with the
bath’s spectral peak; inter-mode coherence is used only as a
secondary diagnostic observable [22, 23].

FIG. 2: Regular vs. irregular detuning–based
dynamical–decoupling (DD) pulse trains. (a) Regular (periodic)
rectangular DD with fixed detuning amplitude ωD, pulse width δ,
and period τ (duty cycle η = δ/τ). (b) Irregular (randomized)
DD in which the width δk, period τk, and detuning amplitude
ωD,k fluctuate from cycle to cycle (with 0 < δk < τk). Vertical
dashed lines mark pulse-start times; double-headed arrows show
the parameters on the first interval. Irregular DD models realistic
timing/amplitude noise and is used to assess the robustness of the
scheme.

mode resonance models to a two-mode, interacting
setting and captures both direct mode–mode coupling
and indirect, bath-mediated exchange within one exactly
solvable bilinear framework. The total Hamiltonian
reads:

H = HS +HB +HSB , (1)

where the system Hamiltonian is

HS = ω1 a
†
1a1 + ω2 a

†
2a2 + g (a†

1a2 + a†
2a1). (2)

Here aℓ (ℓ = 1, 2) is the bosonic annihilation operator
for mode ℓ, and a†

ℓ is its Hermitian-conjugate creation
operator. They satisfy the canonical commutation
relations [aℓ, a

†
m] = δℓm, [aℓ, am] = [a†

ℓ, a
†
m] = 0, and

the number operator nℓ ≡ a†
ℓaℓ counts the excitations

in mode ℓ. We set ℏ = 1 throughout. The bilinear
term g(a†

1a2+a†
2a1) is a beam-splitter (coherent hopping)

interaction that exchanges quanta between the two
modes. The parameters ω1 and ω2 are the natural (bare)
frequencies of the modes, and g is their direct coherent
coupling. The bath Hamiltonian is

HB =
∑

j

ωj b
†
jbj , (3)

where j indexes the harmonic modes of the bath
(reservoir) of frequency ωj , and bj (b†

j) are bosonic
annihilation/creation operators obeying [ bj , b

†
k ] = δjk

and [ bj , bk ] = [ b†
j , b

†
k ] = 0. The number operator nj ≡

b†
jbj counts excitations in mode j. In thermal equilibrium

at temperature TB , the mean occupation of the mode j
is ⟨nj⟩ =

(
eβωj − 1

)−1 and β = (kBTB)−1, with kB the
Boltzmann constant. The interaction Hamiltonian is

HSB =
∑

j

[
κ1j

(
a†

1bj + b†
ja1

)
+ κ2j

(
a†

2bj + b†
ja2

)]
,

(4)
where κ1j , κ2j ∈ C are system–bath coupling constants
that set the strength of excitation exchange between
system mode ℓ and bath mode j.
The Heisenberg equations of motion follow directly from
the total Hamiltonian (see Appendix A):

d

dt
a1 = −i ω1 a1 − i g a2 − i

∑
j

κ1jbj ,

d

dt
a2 = −i ω2 a2 − i g a1 − i

∑
j

κ2jbj ,

d

dt
bj = −i ωj bj − i κ1ja1 − i κ2ja2.

(5)

Solving for bj(t) gives:

bj(t) = bj(0) e−iωjt − i κ1j

∫ t

0
ds a1(s) e−iωj(t−s)

− i κ2j

∫ t

0
ds a2(s) e−iωj(t−s). (6)

Substituting Eq. 6 into 5 yields:

ȧ1(t) = −i ω1 a1(t) − i g a2(t) + F1(t)

−
∫ t

0
dsG(t− s) [ a1(s) + a2(s)],

ȧ2(t) = −i ω2 a2(t) − i g a1(t) + F2(t)

−
∫ t

0
dsG(t− s) [ a1(s) + a2(s)]. (7)
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Assuming both system modes couple equally to the same
bath, set κ1j = κ2j = κj for all j. Then the noise
terms for both modes are identical: F1(t) = F2(t) =
F (t) = −i

∑
j κj bj(0) e−iωjt. Physically, this means

the reservoir injects the same quantum noise into both
oscillators, so any coherence or energy transfer that
appears between them arises from both direct exchange
and the bath’s finite memory.

The memory kernel

G(t− s) =
∑

j

κ2
j e

−iωj(t−s)

=
∫
dω J(ω) e−iω(t−s), (8)

where J(ω) = Γγ
2π

1
(ω−Ω)2+γ2 is the spectral density of the

reservoir modes: the Lorentzian form specifies that the
reservoir is peaked around a central frequency Ω with
width γ. The parameter Ω sets the resonance frequency
of the bath, while Γ controls the overall coupling strength
between the system and the environment. G(t − s)
encodes how the reservoir’s correlations influence the
system’s dynamics at earlier times. A larger Γ indicates
stronger system–bath interaction, while the inverse width
γ−1 sets the reservoir’s correlation time: smaller γ
implies longer memory. When G(t− s) remains non-zero
for finite delays, the bath feeds information back into the
system, producing non-Markovian effects such as revivals
and backflow of energy and coherence.

We adopt the resonance condition where both system
modes are set equal to the reservoir’s central frequency:
ω1 = ω2 = Ω. This ensures that the reservoir’s
correlations are maximally relevant for the system’s
dynamics, especially at earlier times.

When the bath correlation function G(t − s) remains
non-zero for finite delays, the reservoir can feed
information back into the system, producing non-
Markovian effects such as revivals and partial backflow
of energy and coherence. In contrast, for large γ (broad
spectral width), the reservoir acts effectively memoryless,
yielding purely Markovian decay.

We expand:

a1(t) = A1(t)a1(0) +A2(t)a2(0) +
∑

j

B1j(t)bj(0), (9)

a2(t) = C1(t)a1(0) + C2(t)a2(0) +
∑

j

B2j(t)bj(0). (10)

By symmetry, the direct coupling term and the shared
bath treat both modes in the same way: each mode
can exchange energy with the other through the direct
hopping g, and both modes interact identically with
the same reservoir. Physically, this means that any
excitation initially in mode 1 can flow into mode 2
in exactly the same way that an excitation initially in
mode 2 can flow back into mode 1. Mathematically, this
symmetry implies C1(t) = A2(t) and C2(t) = A1(t).

To find the linear, first-order ordinary differential
equations for the amplitudes, substitute the operator
expansions for a1(t) and a2(t) in Eq. 9 and Eq. 10 back
into the Heisenberg equations of motion, then equate
coefficients of the linearly independent initial operators
a1(0), a2(0), and bj(0). This yields a closed system
of coupled integro-differential equations for the mode
amplitudes and the bath amplitudes:

Ȧ1(t) = −i ω1 A1(t) − i g A2(t) −
∫ t

0
dsG(t− s) [A1(s) +A2(s)],

Ȧ2(t) = −i ω2 A2(t) − i g A1(t) −
∫ t

0
dsG(t− s) [A1(s) +A2(s)].

Physically, these equations show that the rate of
change of each mode’s amplitude depends on three
effects: (1) its own natural frequency, (2) coherent
exchange with the other mode through the direct
coupling g, and (3) the memory effect of the shared bath,
captured by the integral term with G(t− s).

Similarly, matching the coefficients of each bath
operator bj(0) yields the equations for the bath
amplitudes:

Ḃ1j(t) = −i ωj B1j(t) − i κ1j A1(t) − i κ2j A2(t),

Ḃ2j(t) = −i ωj B2j(t) − i κ1j A1(t) − i κ2j A2(t).

For the Lorentzian spectral density, the memory kernel
is

G(t− s) = Γγ
2 e−[ γ+iΩ ] |t−s|,

which satisfies

Ġ(t− s) = −(γ + iΩ)G(t− s).

Differentiating yields explicit second-order ODEs
for the mode amplitudes (homogeneous) together
with inhomogeneous second-order ODEs for the bath
amplitudes driven by the system modes:

Ä1 + α Ȧ1 + β A1 + γ A2 = 0, (11)

Ä2 + α̃ Ȧ2 + β̃ A2 + γ̃ A1 = 0, (12)

where α = γ + i(Ω + ω1), α̃ = γ + i(Ω + ω2), β = Γγ
2 −

ω1Ω + iγω1, β̃ = Γγ
2 − ω2Ω + iγω2, and γ̃ = ig(γ + iΩ).

The bath amplitudes obey inhomogeneous second-
order ODEs:

B̈1j + αB Ḃ1j + βB B1j = −κj [ iα+ ωj ] e−iωjt, (13)

B̈2j + αB Ḃ2j + βB B2j = −κj [ iα+ ωj ] e−iωjt, (14)

where αB = α+ iωj and βB = β − i ωj .
The explicit bath terms sum to the missing probability:

|A1(t)|2 + |A2(t)|2 +
∑

j

|B1j(t)|2 = 1.
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We assume that at time t = 0, the total system is
prepared in a product state where the two oscillators are
in a pure quantum state and the reservoir is in thermal
equilibrium. Specifically, the system state is |ψ0⟩ = |1⟩1⊗
|0⟩2, meaning that mode 1 starts in the single-excitation
Fock state and mode 2 starts in its vacuum state.
The bath is assumed initially thermal, described by a
product of thermal states for each bath oscillator mode,
ρB =

⊗
j ρj , ρj = 1

Zj

∑
nj
e−β nj ωj |nj⟩⟨nj |, where

Zj =
∑∞

nj=0 e
−β nj ωj . The mean thermal occupation

for each bath mode is nB =
(
eβωj − 1

)−1. Because the
system and bath are uncorrelated at t = 0, the full initial
density operator is ρ(0) = |ψ0⟩⟨ψ0| ⊗ ρB .

Using the initial populations n10 = ⟨a†
1(0)a1(0)⟩ = 1,

n20 = ⟨a†
2(0)a2(0)⟩ = 0, and nB =

〈
b†

j(0) bj(0)
〉

=(
eβω − 1

)−1, the exact average excitation numbers
(AENs) for the two modes are:〈

a†
1(t) a1(t)

〉
= |A1(t)|2 n10 + |A2(t)|2 n20

+
∑

j

|B1j(t)|2 nB , (15)

〈
a†

2(t) a2(t)
〉

= |A2(t)|2 n10 + |A1(t)|2 n20

+
∑

j

|B2j(t)|2 nB . (16)

Because the total probability is conserved in this
exactly solvable model, the sum over the squared
amplitudes satisfies

|A1(t)|2 + |A2(t)|2 +
∑

j

|Bij(t)|2 = 1, (i = 1, 2).

This ensures that any energy leaving the system modes
is fully accounted for by the bath.

Combining the explicit amplitudes with probability
conservation, the exact AENs can be written as:

n1(t) =
〈
a†

1(t) a1(t)
〉

= |A1(t)|2 n10 + |A2(t)|2 n20

+
[

1 − |A1(t)|2 − |A2(t)|2
]
nB ,

(17)

n2(t) =
〈
a†

2(t) a2(t)
〉

= |A2(t)|2 n10 + |A1(t)|2 n20

+
[

1 − |A1(t)|2 − |A2(t)|2
]
nB .

(18)

Here, the final term captures the indirect contribution
from the bath, which exactly accounts for the probability
that flows out of the system modes and into the reservoir.

The inter-mode coherence between the two oscillators
is given by the off-diagonal correlation function〈

a†
1(t) a2(t)

〉
= A∗

1(t)A2(t)n10 +A∗
2(t)A1(t)n20

+
∑

j

B∗
1j(t)B2j(t)nB . (19)

For our initial conditions, this reduces to〈
a†

1(t) a2(t)
〉

= A∗
1(t)A2(t) +

∑
j

|B1j(t)|2 nB ,

so under symmetry the bath-induced part of the
coherence is purely real and directly linked to the total
probability that leaks into the environment. Combining
with probability conservation, the exact inter-mode
coherence becomes:

n12(t) =
〈
a†

1(t) a2(t)
〉

= A∗
1(t)A2(t)

+
[

1 − |A1(t)|2 − |A2(t)|2
]
nB .

(20)

A non-zero value indicates phase coherence induced by
direct coupling or by the shared reservoir’s memory.
However, non-zero coherence does not by itself imply
genuine quantum entanglement. A sufficient condition
for entanglement is that the inter-mode coherence
violates the Cauchy–Schwarz inequality [22, 23]:

|
〈
a†

1(t) a2(t)
〉
|2 >

〈
a†

1(t) a1(t)
〉 〈
a†

2(t) a2(t)
〉
. (21)

If this inequality is not satisfied, the coherence can be
explained by classical correlations alone.

The final closed forms of Eqs. (17) and (18)
are provided in Appendix B, where we solve the
homogeneous second-order linear differential equations
explicitly to obtain A1(t) and A2(t).

III. DYNAMICAL DECOUPLING CONTROL IN
THE NON-MARKOVIAN TWO-OSCILLATOR

SYSTEM

We extend our exact analytical solution by adding
an external dynamical decoupling (DD) field to mitigate
decoherence from a structured thermal reservoir [37,
38]. Throughout this work we employ a LEO-inspired,
detuning (frequency-modulation) DD: we modulate the
system transition frequencies to suppress the system–
bath coupling. This follows the Leakage–Elimination–
Operator (LEO) idea [39, 40], where fast coherent
controls symmetrize the dynamics so that unwanted
couplings average (nearly) to zero in an open-loop
manner without measurements [13, 24, 25, 27]. For
completeness we note the alternative inversion (π-pulse)
DD picture (spin–echo/CPMG/UDD) and its filter-
function interpretation [26–29, 41–44], but we do not use
π pulses here.

Control law (LEO-inspired detuning). We apply a
piecewise-constant detuning to both modes,

fDD(t) =
{
ωD, nτ < t < nτ + δ,

0, otherwise,
n = 0, 1, 2, . . . ,

(22)
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with amplitude ωD, width δ, period τ , and duty cycle
η = δ/τ . The control Hamiltonian

Hc(t) = fDD(t)
(
a†

1a1 + a†
2a2

)
(23)

shifts the instantaneous mode frequencies to

ωi,eff(t) = ωi + fDD(t), i = 1, 2, (24)

so that during ON intervals the interaction acquires a fast
phase eiϕ(t) with ϕ(t) =

∫ t
fDD(t′) dt′. The associated

filter function

F (ω) =
∣∣∣∫ T

0
ei[ωt+ϕ(t)] dt

∣∣∣2
, (25)

develops spectral notches near dominant bath
frequencies [26, 27]; the limit η → 1 approaches
near-continuous modulation. Operationally, this acts
as a LEO in the energy basis: rapid gap modulation
suppresses leakage/noise channels [39, 40].
The DD field partitions the evolution into alternating
ON/OFF segments. In each segment, the homogeneous
second-order ODEs for the mode amplitudes
[Eqs. (11)–(12)] retain their form with

ON: ωi 7→ ωi,eff = ωi + ωD, OFF: ωi,eff = ωi.

Equivalently, in the Laplace picture the characteristic
quartic keeps its structure; when DD is ON, the
resonance ω1,2 = Ω is lifted by ωD, and the quartic in
App. B reads

λ4 +Aλ3 +B λ2 + C λ+D = 0, (26)

with shifted coefficients αD, α̃D, βD, β̃D listed in App. B.
We solve each segment exactly and match amplitudes and
first derivatives at every switch, yielding a fully analytic,
piecewise-exact evolution (no phenomenology).
Detuning repeatedly lifts resonance with the Lorentzian
bath peak at Ω, reducing spectral overlap and energy
exchange. The amplitude ωD sets how far we
move off resonance; the duty cycle η sets how long
protection is applied each period. Large ωD and
η → 1 maximize suppression of heating and non-
Markovian revivals, consistent with toggling-frame and
filter-function intuition [26, 27, 36]. In effectively
Markovian baths (γ > Γ), DD has little impact because
dissipated energy is not recovered [36].

A. Regular vs. irregular DD

We consider two implementations of the same
detuning-based (LEO-inspired) DD. Regular DD uses the
perfectly periodic square wave of Eq. (22). Irregular DD
keeps that structure but perturbs each cycle to model
realistic control noise and avoid coherent error build-up:

Xk = X+DX ξk, X ∈ {δ, τ, ωD}, ξk ∼ Unif[−1, 1],
(27)

subject to 0 < δk < τk each cycle. Randomized
decoupling is known to break error synchronization
and improve robustness to device drifts and
model uncertainty [33–35]; for long-memory
baths, nonperturbative analyses report similar
benefits [36]. The trade-off is that notches are smeared
(shallower/broader), so peak suppression is typically
weaker than with perfectly periodic control.
In long-memory baths, strong detuning and a high duty
cycle are the primary levers for suppression: once the
detuning amplitude ωD and duty cycle η are large, cycle-
to-cycle irregularity has little practical downside. By
contrast, at small η the same irregularity shortens the
time spent near the optimal notch frequencies of the
control filter and can noticeably degrade performance. In
effectively memoryless (Markovian) environments, γ ≫
Γ, both regular and irregular DD provide little benefit.
Implementation is identical for both schemes: we
propagate ON/OFF segments with the same closed-form
solutions [Eqs. (17)–(18)], using ωi,eff = ωi + ωD (ON)
and ωi,eff = ωi (OFF), and enforce continuity at every
switch. For irregular DD we draw {δk, τk, ωD,k} with
±20% jitter (as in [36]) while maintaining 0 < δk < τk.
This keeps the treatment analytic and enables a fair
comparison of regular vs. irregular suppression across
bath parameters (Γ, γ,Ω, TB) and control knobs (ωD, η).

IV. RESULTS AND DISCUSSION

To demonstrate the exact non-Markovian dynamics
of two oscillators interacting with a common thermal
reservoir, we examine the time evolution of the
average excitation numbers (AENs) n1(t) and n2(t)
from Eqs. (17)–(18) across complementary regimes and
controls. Unless stated otherwise, the initial state is
n1(0) = 1 (single-excitation Fock state) and n2(0) = 0,
and we work at resonance ω1 = ω2 = Ω to maximize
bath-induced correlations.

A. Markovian vs. non-Markovian (Exact solution).

In the Markovian case (Fig. 3; Γ = 1.0, γ = 15.0,
Ω = ω1 = ω2 = 1.0), the broad bath (γ>Γ) yields a short
correlation time τc ∼ γ−1, so the reservoir is effectively
memoryless. Energy exchange is one-way toward thermal
equilibrium: for our initial conditions and TB used here,
both n1(t) and n2(t) exhibit a smooth monotonic rise
(heating) from their initial values and asymptotically
approach the common thermal occupation nB = (eω/TB −
1)−1. Higher TB gives a larger asymptote, and no
oscillations or revivals are observed.

In contrast, in the non-Markovian regime (Fig. 4) we
use Γ = 15.0, Ω = 1.0, ω1 = ω2 = 1.0, γ = 1.0.
Here the system–reservoir coupling Γ is much larger than
the spectral width γ (Γ > γ), yielding a long reservoir
correlation time that allows energy and information
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FIG. 3: Time evolution of the mode occupation numbers in the
Markovian regime. The upper panel shows n1(t) versus ω1t and
the lower panel shows n2(t) versus ω2t for different bath
temperatures TB (in units of ω1 and ω2, respectively).
Parameters: Γ = 1.0, Ω = 1.0, ω1 = ω2 = 1.0, and γ = 15.0. The
large spectral width with γ > Γ ensures a short reservoir
correlation time, so the bath acts as a memoryless sink, leading
to smooth relaxation without significant revivals or backflow.

FIG. 4: Time evolution of the mode occupation numbers in the
non-Markovian regime. The upper panel shows n1(t) versus ω1t
and the lower panel shows n2(t) versus ω2t for different bath
temperatures TB . Parameters: Γ = 15.0, Ω = 1.0, ω1 = ω2 = 1.0,
and γ = 1.0. Here, Γ > γ, resulting in a long reservoir correlation
time and strong non-Markovian memory effects, which enable
partial revivals and backflow of energy.

to flow back into the system. Consequently, the
dynamics exhibit clear oscillations and partial revivals.
In both cases, the final steady state is purely thermal
and determined by the reservoir temperature, but the
approach to equilibrium reveals whether the environment
acts as a Markovian sink or a non-Markovian memory
channel.

Effect of bath spectral width on both modes. Figure 5
shows n1(t) (top) and n2(t) (bottom) for four bath
widths γ ∈ {0.1, 0.5, 1.0, 5.0} at fixed TB = 1.0.
The spectral width sets the reservoir correlation time,
τc ∼ 1/γ. Small γ (narrow spectrum) gives long τc

and strong memory; large γ (broad spectrum) gives
short τc and effectively memoryless behavior. For
mode 1 (n1(t)), with γ = 0.1, 0.5 the dynamics are
clearly non-Markovian: n1(t) displays underdamped
oscillations and partial revivals before relaxing toward
the thermal value nB . As γ increases to 1.0 and 5.0,
the oscillation amplitude decreases and the evolution
becomes monotonic, indicating that a broadband
reservoir quenches backflow. For mode 2 (n2(t)), starting
from vacuum, n2(t) rises as excitations are transferred
through the shared bath. For small γ the rise is
accompanied by pronounced oscillations and modest
overshoots, out of phase with n1(t); for larger γ the
oscillations vanish and n2(t) increases smoothly and
monotonically to the same thermal limit nB as n1(t).

Coherence and separability. A shared bath can create
coherence between the two modes even when direct
coupling is present. With long bath memory (non-
Markovian, Fig. 6a), the coherence shows clear revivals
and comes close to—but never crosses—the standard
separability bound [22, 23]. With short memory
(Markovian, Fig. 6b), backflow is suppressed and the
coherence grows smoothly to a steady value below that
bound. In short: memory sets revivals vs. saturation,
and in both cases the coherence remains separable.

B. DD control: amplitude vs. duty cycle (regular
DD)

Figures 7 and 8 extend the non-Markovian free
evolution shown in Fig. 4 by activating our LEO-inspired,
detuning-based DD. In the uncontrolled evolution (γ =
1.0), the long bath memory produces oscillatory revivals
in n1(t). Turning on DD shifts the system away from the
bath’s spectral peak and reduces the spectral overlap,
thereby damping these revivals and slowing the growth
of the excitation number.

Detuning amplitude at fixed duty cycle (η = 1.0).
Figure 7 sweeps ωD while holding η = 1.0 (near-
continuous modulation). Larger ωD pushes the
system further off resonance, weakening system–bath
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FIG. 5: Time evolution of the mode occupation numbers at fixed
bath temperature TB = 1.0 for varying bath spectral widths γ.
Top: n1(t) vs. ωt; bottom: n2(t) vs. ωt. Curves correspond to
γ = 0.1 (blue), 0.5 (orange), 1.0 (green), and 5.0 (red).
Parameters: Γ = 5.0, Ω = 1.0, ω1 = ω2 = 1.0. The bath
correlation time scales as τc ∼1/γ: small γ (0.1, 0.5) produces
pronounced non-Markovian oscillations and short-time
overshoots, whereas as γ increases to 1.0 and 5.0 the oscillation
amplitude decreases and the approach becomes monotonic,
indicating that a broadband reservoir quenches backflow. Both
modes converge to the same thermal occupation nB set by TB .

exchange. Consequently, n1(t) shows progressively
stronger suppression of excitation growth and lower
steady-state AEN, with non-Markovian ringing strongly
damped. (For comparison, in the Markovian regime
Γ = 1.0, γ = 15.0, DD produces negligible changes,
consistent with [36].)

Duty cycle at fixed detuning amplitude. Figure 8 fixes
ωD = 25.0 and varies η. For partial modulation (η <
1), the curves exhibit step-like features: during OFF
windows the system briefly re-enters near-resonance and
absorbs energy. As η increases, protection lasts longer
each period, revivals are quenched, and the approach to
steady state becomes smoother; η≈1 closely matches the
high-detuning, continuous case.

Duty-cycle–only scan at fixed TB. Figure 9 isolates
the role of η by fixing ωD = 25.0 and TB = 1.0.
Increasing η lengthens the protected fraction of each
cycle, reduces net energy exchange, and damps memory-
induced oscillations; small η leaves long free-evolution
intervals where stored bath correlations re-excite the
system.
In long-memory baths, both knobs matter: larger ωD

and higher η jointly suppress heating and non-Markovian
revivals; in memoryless baths the effect is negligible [36].

Figure 10 shows how n1(t) changes over time for regular
DD (solid lines) and irregular DD (dashed lines) in a non-
Markovian system. The main system parameters are:

(a) Non-Markovian regime (long memory): coherence exhibits
oscillatory revivals and approaches—but never exceeds—the
separability bound. Parameters: Γ = 1.0, γ = 0.01, Ω = 1.0,
ω1 = ω2 = 1.0, TB = 1.0.

(b) Markovian regime (short memory): coherence increases smoothly
to a steady value below the separability bound, without revivals.
Parameters: Γ = 1.0, γ = 15.0, Ω = 1.0, ω1 = ω2 = 1.0, TB = 1.0.

FIG. 6: Bath memory controls the coherence dynamics: revivals
for long memory versus monotonic saturation for short memory;
in both cases the separability limit is respected.

Γ = 15.0, Ω = 1.0, ω1,0 = ω2,0 = 1.0, γ = 1.0, ωD = 30.0,
and TB = 1.0. We test three duty cycles: η = 0.2 (blue),
η = 0.5 (green), and η = 0.98 (red), where η = δ/τ is the
fraction of each cycle that the control field is on.

In the irregular DD case, we introduce random
variations of ±20% to the pulse width δ, the cycle time
τ , and the detuning amplitude ωD, so that Dδ = 0.2δ,
Dτ = 0.2τ , and DωD

= 0.2ωD. These variations model
realistic imperfections in timing, width, and frequency,
meaning that each parameter can be up to 20% larger or
smaller than its nominal value in each cycle.

For the small duty cycle η = 0.2, the control is active
for only a short part of each cycle. The system interacts
freely with the bath for most of the time, leading to
fast decay of n1(t) and strong non-Markovian oscillations.
Here, irregularity clearly worsens performance, allowing
even more energy to leak away.

For the medium duty cycle η = 0.5, the control is on
for half of each cycle, keeping the system off-resonance for
longer and slowing decoherence. The difference between
regular and irregular DD is much smaller than in the η =
0.2 case, but regular DD still performs slightly better.

For the large duty cycle η = 0.98, the control field is
active almost all the time, keeping the system far off-
resonance for nearly the entire evolution. Decoherence is
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(a) (b)

(c) (d)

FIG. 7: Detuning amplitude at fixed duty cycle. Time evolution of n1(t) in the non-Markovian regime (Γ = 15.0, Ω = 1.0,
ω1,0 = ω2,0 = 1.0, γ = 1.0) for η = 1.0 and increasing ωD: (a) 5.0, (b) 15.0, (c) 20.0, (d) 25.0. Each panel shows three TB . Larger ωD

drives the system further off resonance, suppressing non-Markovian revivals and lowering the steady-state AEN.

strongly suppressed and n1(t) remains close to unity. In
this regime, irregularity has almost no effect because the
modulation is already strong and continuous-like.

In conclusion, increasing η enhances decoherence
suppression in non-Markovian baths. Irregularity has its
greatest negative impact at small η, while for medium
and large η the effect is minimal. At η ≈ 1, regular
and irregular DD perform almost the same because the
system is protected almost all the time.

C. Control performance metric and evaluation
procedure

To quantify how well our LEO-inspired,
detuning–based DD suppresses decoherence, we compare
each controlled trace directly to the uncontrolled
(“free”) evolution computed at the same bath and
system parameters (Γ, γ,Ω, ω1,0 = ω2,0, TB).

Suppression factor. Following common practice in
the filter-function framework and experimental DD
benchmarks, we quantify control by a single time-domain
suppression factor that normalizes the observed decay
under DD to the corresponding no–control decay [24–

28, 30–32]:

S(t) = 1 −
∣∣nDD

1 (t) − nfree
1 (0)

∣∣∣∣nfree
1 (t) − nfree

1 (0)
∣∣ ∈ (−∞, 1]. (28)

If S(t) = 1, this signifies perfect suppression (the
controlled observable stays at its starting level); 0 <
S(t) < 1 indicates partial suppression; S(t) = 0 means no
improvement over free evolution; and S(t) < 0 indicates
the control is detrimental (rare in our parameter ranges).

To compute the suppression factor, the exact dynamics
are solved twice: once without control to obtain the
free trace nfree

1 (t) and, for each DD setting (regular or
irregular), once with control to obtain nDD

1 (t), using
identical initial conditions and bath parameters in all
cases. Both traces are sampled on the same time grid,
and S(t) is evaluated pointwise from Eq. (28). To avoid
numerical artifacts from a near-vanishing denominator at
very early times, reporting begins after a short transient
(e.g., t ≳ 2/Ω), and small numerical overshoots are
clipped so that S(t) ≤ 1.

Fig. 11a and Fig. 11b illustrate the suppression
factor S(t) comparing a DD trajectory against the
corresponding free (uncontrolled) trajectory under the
same bath and system parameters. Recall the
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(a) (b)

(c) (d)

FIG. 8: Duty-cycle sweep at fixed detuning. n1(t) for ωD = 25.0 and η = (a) 0.50, (b) 0.75, (c) 0.90, (d) 0.95; same
non-Markovian parameters as Fig. 7. Smaller η yields intermittent protection with visible steps; as η → 1, modulation becomes
effectively continuous and revivals are quenched.

FIG. 9: Isolating duty-cycle effects. n1(t) at fixed ωD = 25.0
and TB = 1.0 while varying η from 0 to 0.9 (non-Markovian:
Γ = 15.0, γ = 1.0, Ω = ω1,0 = ω2,0 = 1.0). Larger η reduces
energy exchange and damps memory-induced oscillations; η ≈1
gives maximal protection.

interpretation: S(t) = 1 means perfect suppression;
S(t) = 0 means no improvement over free evolution; and
S(t) < 0 means the DD trace deviates more than the free
one (i.e., worse than free at that instant).

Panel (a): Regular DD (duty–cycle sweep). We keep
the detuning amplitude fixed and vary the duty cycle η ∈
{0.3, 0.6, 0.9} in a non-Markovian bath (Γ = 15, γ = 1,
Ω = ω1,0 = ω2,0 = 1, TB = 1; e.g., ωD = 25, τ = 0.27).

FIG. 10: Time evolution of n1(t) under regular (solid) and
irregular (dashed) dynamical–decoupling (DD) control in the
non-Markovian regime. System parameters: Γ = 15.0, Ω = 1.0,
ω1,0 = ω2,0 = 1.0, γ = 1.0, ωD = 30.0, and TB = 1.0. Duty
cycles: η = 0.2 (blue), 0.5 (green), and 0.98 (red), where η = δ/τ .
In the irregular DD case, parameters are perturbed by Dδ = 0.2δ,
Dτ = 0.2τ , and DωD = 0.2ωD, simulating realistic fluctuations in
pulse width, period, and detuning amplitude.

All curves share the same qualitative shape: (i) an early
dip below zero (a transient where switching and bath
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backflow can make the DD trajectory move away from the
initial value a bit faster than the free one), (ii) a positive
lobe where DD does suppress decoherence (S(t) > 0), and
then (iii) a slow return toward S(t) → 0 as both DD and
free traces relax to the same thermal fixed point. Larger
duty cycles are better in the transient window: the first
negative dip is shallower and the positive lobe is slightly
higher for η = 0.9 than for η = 0.3, reflecting that the
system spends more time off resonance each period.

Panel (b): Irregular DD (jittered pulses). We now
introduce ±20% cycle-to-cycle jitter in pulse width δ,
period τ , and detuning amplitude ωD (e.g., ωD = 30),
and sweep η ∈ {0.2, 0.5, 0.98} with the same bath as in
panel (a). Irregular DD keeps the same overall behavior:
a brief negative dip, a positive lobe, then S(t) → 0 at long
times. Two trends are clear. First, increasing η again
helps: the curve for η = 0.98 has the smallest initial dip
and the largest positive lobe. Second, jitter mainly hurts
at small duty cycle: for η = 0.2 the dip is deeper and
the positive lobe smaller, while for η ≈ 1 the irregular
traces are nearly as good as regular ones. This matches
DD “filter” intuition: randomizing the timing smears the
spectral notch, which matters little when protection is
almost continuous but can reduce peak suppression when
the control is only on for a short fraction of each cycle.

Takeaway. These S(t) plots quantify what we see
in the raw occupations n1(t): bigger duty cycles
(and, elsewhere, bigger detuning) give better transient
suppression; irregular (randomized) DD is robust at high
duty cycle but can be slightly weaker at small duty cycle.
Because both controlled and free dynamics relax to the
same thermal limit, S(t) naturally drifts to 0 at long
times—the metric evaluates how much decoherence is
slowed down, not a change of the final thermal state.

V. CONCLUSIONS

We have presented an exact, approximation–free
analysis of two harmonic oscillators interacting with a
common Lorentzian reservoir, and we have embedded
open-loop control directly into this analytic framework.
By eliminating the bath degrees of freedom and
reducing the dynamics to a homogeneous second–order
system, we solved the resulting characteristic quartic
and constructed a probability-conserving propagator
for the mode amplitudes. This gives closed–form
expressions for the average excitation numbers and
the inter–mode coherence, cleanly separating genuine
environment–memory effects (revivals, backflow) from
direct coherent exchange. Because the solution is exact,
no Born or Markov assumptions are invoked, and the
conserved norm ensures that all energy leaving the
system is accounted for in the bath and can flow back
according to the bath correlation time.

Furthermore, we implemented a leakage-elimination-
operator (LEO)-inspired detuning control, treating
both regular (periodic) and irregular (jittered)

dynamical–decoupling (DD) pulse trains. The control
enters as a piecewise constant frequency shift; each
ON/OFF segment is propagated with the same
closed–form homogeneous solution, and continuity of
amplitudes and first derivatives is enforced at every
switch. This yields a fully analytic piecewise–exact
integration of controlled non–Markovian dynamics
without additional phenomenology.
Our main physical conclusions are as follows: in
long–memory (non–Markovian) baths the uncontrolled
system shows oscillatory revivals and transient
backflow; in short–memory (effectively Markovian)
baths relaxation is monotonic and revivals are quenched;
detuning suppresses decoherence by repeatedly lifting
resonance with the reservoir peak and reducing spectral
overlap, so larger detuning amplitude ωD and higher
duty cycle η more strongly curb heating and damp
revivals, consistent with both the toggling–frame and
filter–function pictures; comparing regular and irregular
DD, cycle–to–cycle jitter primarily harms performance
at small η by smearing spectral notches, while at high
η the difference becomes negligible because protection
is nearly continuous; a single time–domain suppression
factor S(t) (pointwise comparison of the controlled
trace to its free counterpart) captures the transient
nature of DD, with S(t) → 0 at long times because
both evolutions approach the same thermal fixed point;
coherence is used here as a diagnostic rather than a
resource—the exact propagator yields its time evolution,
showing revivals in non–Markovian settings and strong
damping under high–duty–cycle detuning, and in our
parameter ranges it remains below standard separability
bounds so none of the conclusions rely on entanglement
generation. From these results, practical design rules
follow without case–by–case tuning: pick a detuning
amplitude large compared to the bath width to minimize
spectral overlap during ON windows; maximize the duty
cycle η within hardware limits since η → 1 is the most
robust and jitter–tolerant regime; choose a period τ
short compared to the bath correlation time 1/γ because
long OFF windows allow stored correlations to re–excite
the system; and use S(t) to calibrate controls—the onset
time, peak value, and time area where S(t) > 0 provide
an operational measure of protection and indirectly
reveal the bath memory scale.

The present treatment has clear boundaries: it
assumes identical system–bath couplings for the two
modes, a Lorentzian spectral density, a common
detuning applied to both modes, and resonance with the
bath peak; we also focus on frequency–modulation DD
rather than inversion (π–pulse) sequences and adopt a
single–excitation initial condition for clarity. Looking
ahead, the analytic machinery is portable: asymmetric
couplings and detunings, alternative spectra (Ohmic,
Drude–Lorentz, multi–peaked), and larger oscillator
networks where bath–mediated transport competes with
sparse coherent links are natural extensions; on the
control side, shaping the detuning waveform beyond
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(a) Regular DD: fixed detuning (e.g., ωD = 25) with duty–cycle
sweep; bath: Γ = 15, γ = 1, Ω = ω1,0 = ω2,0 = 1, TB = 1. Higher
duty cycles yield S(t) closer to 1 in the transient window.

(b) Irregular (jittered) DD: same bath and TB , with ±20% jitter in
δ, τ , and ωD (e.g., ωD = 30). At large duty cycle (η ≈ 1) the
irregular traces achieve S(t) comparable to regular DD; at small duty
cycle suppression is weaker.

FIG. 11: Suppression factor S(t) (Eq. 28) comparing DD vs. free evolution under identical bath parameters. S(t) = 1 denotes
perfect decoherence suppression; S(t) = 0 denotes no improvement over free; S(t) < 0 indicates transient degradation.

squares, hybridizing with inversion–based DD, and
optimizing to maximize the time area with S(t) > 0
are promising directions; moreover, because S(t) and
the coherence trace respond sensitively to γ and Γ, the
framework supports system–identification protocols that
infer bath memory from transient suppression data.
In sum, combining an exact probability–conserving
propagator with a piecewise–exact treatment of
detuning–based DD yields clear, quantitative rules for
suppressing decoherence in long–memory environments
and offers a rigorous benchmark for open–loop coherence
protection in structured reservoirs.
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Appendix A: Derivation of the Heisenberg Equations

Starting from the total Hamiltonian in Eq. (1), the
Heisenberg equation of motion for any operator Ô is:

d

dt
Ô = −i[ Ô, H ]. (A1)

We take ℏ = 1 and ∂Ô/∂t = 0 for the operators used
here, so ˙̂

O = i[H, Ô] = −i[Ô,H].

1) Mode a1: Commutator structure
For a1 the total commutator separates as:

[ a1, H ] = [ a1, HS ] + [ a1, HB ] + [ a1, HSB ].

The system Hamiltonian part expands as:

HS = ω1 a
†
1a1 + ω2 a

†
2a2 + g ( a†

1a2 + a†
2a1).
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Standard bosonic commutators yield:

[ a1, HS ] = ω1 a1 + g a2, [ a1, HB ] = 0,

[ a1, HSB ] =
∑

j

κ1jbj .

Therefore,

d

dt
a1 = −i [ a1, H ] = −i ω1 a1−i g a2−i

∑
j

κ1jbj . (A2)

2) Modes a2 and bj

Similarly,

d

dt
a2 = −i ω2 a2 − i g a1 − i

∑
j

κ2jbj , (A3)

d

dt
bj = −i ωj bj − i κ1ja1 − i κ2ja2. (A4)

Combining these gives Eq. (5) of the main text.
Notes. (i) The sign convention in Eq. (A1) is used

consistently throughout, so the signs in Eqs. (A2)–(A4)
follow directly from −i[ Ô,H ]. (ii) The result [ a1, HB ] =
0 reflects that HB acts solely on bath operators. (iii)
The HSB commutator gives the exchange terms because
of the rotating–wave form of HSB .

Appendix B: Exact Quartic Solution and the Role
of the Resolvent Cubic

1) Coupled-mode system
The homogeneous dynamics for the coupled

amplitudes A1(t) and A2(t) are:

Ä1 + α Ȧ1 + β A1 + γ A2 = 0, (B1)

Ä2 + α̃ Ȧ2 + β̃ A2 + γ̃ A1 = 0. (B2)

If the system is fully symmetric, then the cross-
coupling is simply γ̃ = γ. If the system parameters are
asymmetric (e.g., ω1 ̸= ω2), then the general form γ̃ must
be used.
2) Exponential ansatz

Assume:

A1(t) = X eλt, A2(t) = Y eλt.

Substituting into Eqs. (B1)–(B2) gives:[
λ2 + αλ+ β γ

γ̃ λ2 + α̃ λ+ β̃

] [
X
Y

]
= 0.

The nontrivial solution condition is:

det
[
λ2 + αλ+ β γ

γ̃ λ2 + α̃ λ+ β̃

]
= 0,

=⇒ λ4 +Aλ3 +B λ2 + C λ+D = 0.

with:

A = α+α̃, B = α α̃+β+β̃, C = α β̃+α̃ β, D = β β̃−γ γ̃.

3) Mode ratio
When we solve the coupled ODE system, the

amplitudes X and Y must satisfy a specific relation for
each possible eigenvalue λk.

To see this, we insert the exponential ansatz A1(t) =
Xeλt and A2(t) = Y eλt into the first full ODE:

Ä1 + α Ȧ1 + β A1 + γ A2 = 0.

The derivatives yield:

Ȧ1 = λXeλt, Ä1 = λ2Xeλt.

Substituting these gives:

λ2X eλt + αλX eλt + βX eλt + γY eλt = 0.

Dividing by the common exponential factor eλt leaves
the algebraic condition:(

λ2
k + αλk + β

)
X + γ Y = 0.

So, for each allowed eigenvalue λk, the two mode
amplitudes must have the fixed ratio:

rk = Y

X
= − λ2

k + αλk + β

γ
.

In simple terms, this means that for each collective
oscillation mode, the strength of mode 2 is set by the
motion of mode 1 through the direct coupling γ. The
factor rk tells us exactly how much mode 2 responds when
mode 1 oscillates at a given λk.
4) General solution

Combining the mode ratio condition with the fact that
the system supports four independent eigenmodes, the
total solution is a sum over all four allowed pairs.

Each eigenmode has the same time dependence for
both amplitudes but is weighted by its specific mode ratio
rk:

A1(t) =
4∑

k=1
Ck e

λkt,

A2(t) =
4∑

k=1
rk Ck e

λkt. (B3)

This guarantees that the coupled equations, the
characteristic quartic, and the eigenvector relation are
all exactly satisfied.
5) Solving the quartic by Ferrari’s method

To find the exact eigenvalues λk, we solve the quartic
characteristic equation:

λ4 +Aλ3 +B λ2 + C λ+D = 0.
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Quartic equations can be solved in closed form, but
the standard strategy is to first remove the cubic term
by a simple change of variable:

λ = y − A

4 .

Substituting this shift into the quartic cancels the y3

term and leaves a depressed quartic:

y4 + p y2 + q y + r = 0, (B4)

where, p = B − 3
8A

2, q = C − 1
2AB + 1

8A
3, r =

D − 1
4AC + 1

16A
2B − 3

256A
4. This form is simpler to

handle because it has no cubic term. Ferrari’s method
[45, 46] then factors this depressed quartic into a product
of two quadratics by introducing an auxiliary parameter,
which is determined by solving a related resolvent cubic.
Solving that resolvent cubic gives all the information
needed to split the quartic exactly and find its four roots.

This method provides a fully analytic solution for the
quartic eigenvalues λk, which in turn fully determine the
mode amplitudes and the system’s time evolution.
6) Factorization and resolvent cubic

Ferrari’s factorization:

y4 + p y2 + q y + r = (y2 + a y +m)(y2 − a y + n),

leads to the resolvent cubic:

z3 − p

2z
2 − r z +

(rp
2 − q2

8

)
= 0. (B5)

A real root z0 gives:

a =
√

2z0 − p, b = − q

2a.

Exact closed solution for the resolvent cubic Eq.
B5:

Eq. B5 can be written as:

z3 +Acz
2 +Bcz + Cc = 0,

where Ac = − p
2 , Bc = −r, Cc = rp

2 − q2

8 .
The exact solution for a real root is:

z0 = u+ v − Ac

3 ,

where u = 3

√
− Q

2 +
√(

Q
2

)2
+

(
P
3

)3
, v =

3

√
− Q

2 −
√(

Q
2

)2
+

(
P
3

)3
, P = Bc − A2

c

3 ,

Q = 2 A3
c

27 − AcBc

3 + Cc.
Once z0 is known, the key auxiliary factor is:

a =
√

2z0 − p , b = − q

2a.Remark: These coefficients p, q, r depend on the system-
bath parameters through A,B,C,D, which in turn
depend on α, α̃, β, β̃, γ, and γ̃. Their explicit forms are:

A = α+ α̃,

B = αα̃+ β + β̃,

C = αβ̃ + α̃β,

D = ββ̃ − γγ̃.

and



α = γ + i(Ω + ω1),

α̃ = γ + i(Ω + ω2),

β = Γγ
2 − ω1Ω + iγω1,

β̃ = Γγ
2 − ω2Ω + iγω2.

Thus the resolvent cubic closes the Ferrari solution for
the quartic. This completes the explicit analytical
route to obtain all quartic roots in radicals.

Roots:y1,2 = + a
2 ±

√
z0 − b ,

y3,4 = − a
2 ±

√
z0 + b .

λ = y − A

4 . (B6)

7) System-specific form
Roots λk are fully determined by the physical

parameters: γ,Γ, g,Ω, ω1, ω2, via α, α̃, β, β̃, γ, γ̃.

λ1,2 = − γ

2 − i

4(2Ω + ω1 + ω2) + 1
2

√
2z0 −

[
γ2 + Γ γ − (Ω + ω1)(Ω + ω2) + i γ [ 2Ω + 2(ω1 + ω2)]

]
− 3

8
[

2γ + i(2Ω + ω1 + ω2)
]2

± 1
2

√
− 2z0 −

[
γ2 + Γ γ + i γ [ 2Ω + 2(ω1 + ω2)] − Ω2 − 2Ω(ω1 + ω2) − ω1ω2

]
− 3

4
[

2γ + i(2Ω + ω1 + ω2)
]2 − 2b,
(B7)
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λ3,4 = − γ

2 − i

4(2Ω + ω1 + ω2) − 1
2

√
2z0 −

[
γ2 + Γ γ − (Ω + ω1)(Ω + ω2) + i γ [ 2Ω + 2(ω1 + ω2)]

]
− 3

8
[

2γ + i(2Ω + ω1 + ω2)
]2

± 1
2

√
− 2z0 −

[
γ2 + Γ γ + i γ [ 2Ω + 2(ω1 + ω2)] − Ω2 − 2Ω(ω1 + ω2) − ω1ω2

]
− 3

4
[

2γ + i(2Ω + ω1 + ω2)
]2 − 2b.
(B8)

Here, the auxiliary terms are:

b =
(
γ+i(Ω+ω1)

)(
Γγ
2 −ω2Ω+i γ ω2

)
+

(
γ+i(Ω+ω2)

)(
Γγ
2 −ω1Ω+i γ ω1

)
, z0 = real solution of the resolvent cubic.

8) Initial conditions and final amplitudes

To fully determine the solution, the constants Ck are
fixed by the initial conditions. We impose:

A1(0) = 1, A2(0) = 0, Ȧ1(0) = − i ω1, Ȧ2(0) = − i g.

Substituting the general solutions,

A1(t) =
4∑

k=1
Ck e

λkt, A2(t) =
4∑

k=1
rk Ck e

λkt,

we get:

A1(0) =
4∑

k=1
Ck = 1, A2(0) =

4∑
k=1

rk Ck = 0.

For the time derivatives,

Ȧ1(t) =
4∑

k=1
λk Ck e

λkt, Ȧ2(t) =
4∑

k=1
λk rk Ck e

λkt.

Evaluating at t = 0:

Ȧ1(0) =
4∑

k=1
λk Ck = − i ω1, Ȧ2(0) =

4∑
k=1

λk rk Ck = − i g.

So the four conditions are:

C1 + C2 + C3 + C4 = 1,

r1 C1 + r2 C2 + r3 C3 + r4 C4 = 0,

λ1 C1 + λ2 C2 + λ3 C3 + λ4 C4 = − i ω1,

λ1 r1 C1 + λ2 r2 C2 + λ3 r3 C3 + λ4 r4 C4 = − i g.

Putting this in compact matrix form:

M C =

 1
0

− i ω1
− i g

 , M =


1 1 1 1

r1 r2 r3 r4

λ1 λ2 λ3 λ4

λ1r1 λ2r2 λ3r3 λ4r4

 . C =

C1
C2
C3
C4

 .
Solving this linear system gives all the Ck, which then
fully specify A1(t) and A2(t).

—
9) Final population expressions

n1(t) = |A1(t)|2 n10 + |A2(t)|2 n20 +
[

1 − |A1(t)|2 − |A2(t)|2
]
nB ,

(B9)

n2(t) = |A2(t)|2 n10 + |A1(t)|2 n20 +
[

1 − |A1(t)|2 − |A2(t)|2
]
nB .

(B10)

(i) For numerical stability, choose square–root
branches in Eqs. (B7)–(B8) consistently across time steps
(e.g., by continuity in λk). (ii) Sorting modes by Reλk

is helpful when enforcing decaying transients. (iii) The
matrix system for C is well-conditioned if the λk are
nondegenerate; near degeneracies, regularization or high-
precision arithmetic may be useful.
This completes the exact quartic solution with proper
cross-coupling.
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